S6 Maths. Sequences and Series

2013-11-30 5:23 am
(a) Find the remainder when (x+1) ^ n(2n+1) is divided by x.
(b) Let Pn=8 x 8^2 x 8^3 x ... x 8^2n . Express Pn as a power of 8.
(c) If today is Monday, which day of the week will it be after Pn days?

步驟+答案!!

備註:
題a, 係 (x+1) 的 [n(2n+1)] 成組次方
題b, Pn 的 n 係喺下方的小n
更新1:

a. 錯了>< c. 答案正確但睇唔明T_T

更新2:

a 係=1

回答 (4)

2013-11-30 9:07 pm
✔ 最佳答案
(a) Let f(x) = (x+1)^[n(2n+1)], so the remainder when f(x) is divided by x is :
f(0)
= (0+1)^[n(2n+1)]
= 1

(b) Pn
= 8 * 8^2 * 8^3 * ... * 8^2n
= 8^(1+2+3+...+2n)
= 8^[(1+2n)(2n)/2]
= 8^[n(2n+1)]
(c) A week has 7 days, to calc the day of the week is to find the remainder of Pn divided by 7. Put x=7 into part (a), therefore Pn=f(x)=f(7), so the remainder is 1. 1 day after Monday is Tuesday. That is, the day of the week after Pn days is Tuesday.
2013-12-07 2:52 am
還是要去 http://aaashops。com 品質不錯,老婆很喜歡。
吴匑哀仆俪
2013-11-30 8:06 am
8ⁿ = (1 + 7)ⁿ = 1 + 7K
2013-11-30 8:04 am
a)(x+1) ^ n(2n+1) / x = (x+1) ^ [n(2n+1)-1] remainder = 0

b) Pn=8 x 8^2 x 8^3 x ... x 8^2n = 8^(1+2+3+ ....... + 2n)
= 8^[(1+2n)(2n)/2]

c) 唔識做,計日子應該是 +7+7+7之類,例如 1 號是星期一,則 8 號,15號,22號也是星期一,唔知點同 8 拉上關係。

2013-11-30 00:12:34 補充:
用 Binomial 將式子改為 (1+7)^m 的形式,可得到

(1+7)m = 1 + (m)(7) + [(m)(m-1)/2](7^2) + [(m)(m-1)(m-2)/(3)(2)](7^3) + ..................

所以答案是 星期二(Tuesday)。


收錄日期: 2021-04-27 20:41:38
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20131129000051KK00160

檢視 Wayback Machine 備份