Using the remainder theorem to solve this equation?

2013-11-27 2:13 pm
Question is attached as an image.


http://i44.tinypic.com/11943ma.jpg

回答 (2)

2013-11-27 2:50 pm
✔ 最佳答案
P(x) = 2x^4 - 5x^3 - 5x^2 + 8
P(3) = 2(3)^4 - 5(3)^3 - 5(3)^2 + 8
P(3) = - 10 answer//


3|....2....- 5...- 5....0....8
..............6.....3..-6...- 18
.-------------------------------------
.....2........1...-2..- 6...- 10 < remainder//
2013-11-27 10:25 pm
By long division, or whatever...
2 1 -2 -6
x-3 / 2 -5 -5 0 8
2 -6
-------------
1 -5
1 -3
-------------
-2 0 8
-2 6
--------
-6 8
-6 18
-----
-10
You will find that
2x^4 - 5x^3 - 5x^2 + 8 = (x-3)(2x^3+x^2-2x-6) - 10
[Quotient = 2x^3+x^2-2x-6, reminder = -10]
Therefore, by reminder theorem, P(3) = -10.


收錄日期: 2021-04-13 19:49:50
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20131127061311AArwLnF

檢視 Wayback Machine 備份