三角函數證明y=-t^2/2 + 1/2

2013-11-28 6:06 am
設t=tanθ及y=[(cos^2θ-sin^2θ)/2sinθcosθ ] * tanθ
證明y=-t^2/2 + 1/2

回答 (2)

2013-11-28 9:38 am
✔ 最佳答案
只需用簡單的三角函數恆等式 tanθ = sinθ/cosθ 和四則混算便可。

左式
= y
= [(cos²θ - sin²θ) / 2sinθcosθ ] x tanθ
= (1/2)[(cos²θ/sinθcosθ) - (sin²θ/sinθcosθ)] x tanθ
= (1/2)[(cosθ/sinθ) - (sinθ/cosθ)] x tanθ
= (1/2)[(1/tanθ) - tanθ] x tanθ
= (1/2)[(1/tanθ) - (tan²θ/tanθ)] x tanθ
= (1/2)[(1 - tan²θ) / tanθ] x tanθ
= (1/2)(1 - tan²θ)
= (-1/2)(tan²θ - 1)
= (-1/2)(t² - 1)
= -t²/2 + 1/2
= 右式
參考: andrew
2013-11-28 8:27 am
cos(2θ) = cos²θ-sin²θ
sin(2θ) = 2sinθcosθ
tan(2θ) = [2tanθ] / [1-tan²θ]

y = [(cos²θ-sin²θ)/2sinθcosθ ] * tanθ

y = [cos(2θ)/sin(2θ)] * tanθ

y = [1/tan(2θ)]* tanθ

y = [(1-tan²θ)/(2tanθ)]* tanθ

y = [(1-tan²θ)/2]

y = 1/2 - tan²θ/2

y = 1/2 - t²/2

y = - t²/2 + 1/2


收錄日期: 2021-04-11 20:20:58
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20131127000051KK00212

檢視 Wayback Machine 備份