請詳細解釋下條計法 :
圖片參考:http://imgcld.yimg.com/8/n/HA05788109/o/20131126125204.jpg
答案計法 :T(2) =1 = (1/2)^0
T(4) = 1/2 = (1/2)^1
T(6) = 1/4 = (1/2)^2
T(8) = 1/8 = (1/2)^3
T(2n) = 1/2^(n-1) = (1/2)^(n-1) [即點解不是T(2n) = 1/2^(2n-1)]
T(2)*T(4)*...*T(2n)
= (1/2)^0 * (1/2)^1 * ... * (1/2)^(n-1)
= (1/2)^[0+1+...+(n-1)]
= (1/2)^[n(n-1)/2] [點解 (1/2)^[0+1+...+(n-1)] 變成 (1/2)^[n(n-1)/2]及多了分母2 ???]
= 2^[-n(n-1)/2]