✔ 最佳答案
Geometric sequence
a = √2
r = 1/√2
T(n) = √2 * (1/√2)^(n-1) = 1/(√2)^(n-2)
T(2) = 1 = (1/2)^0
T(4) = 1/2 = (1/2)^1
T(6) = 1/4 = (1/2)^2
T(8) = 1/8 = (1/2)^3
...
T(2n) = 1/2^(n-1) = (1/2)^(n-1)
T(2)*T(4)*...*T(2n)
= (1/2)^0 * (1/2)^1 * ... * (1/2)^(n-1)
= (1/2)^[0+1+...+(n-1)]
= (1/2)^[n(n-1)/2]
= 2^[-n(n-1)/2]
2013-11-26 13:28:58 補充:
Bid,不好意思,遲了解答。
(1)
即點解T(2n) = 1/2^(n-1) 不是T(2n) = 1/2^(2n-1)
T(n) 我指原本的 sequence,所以是 1/(√2)^(n-2)。
全式把 n 變 2n。
T(2n) = 1/(√2)^(2n-2) = 1/2^(n-1)
2013-11-26 13:29:02 補充:
(2)
及點解 (1/2)^[0+1+...+(n-1)] 變成 (1/2)^[n(n-1)/2] 及多了分母2 ???
1+2+3+...+n = (1+n)*n/2
0+1+2+...+(n-1) = (0+n-1)*n/2
公式 = (頭 + 尾) * 項數 / 2