✔ 最佳答案
If a is not a positive integer, then the summation 1^a+...+n^a is not a polynomial.
2013-11-13 18:04:12 補充:
We can prove that 1^a+...+n^a ~ O(n^(a+1)) for a is not -1.
2013-11-13 19:22:29 補充:
Case 1: a in N
Let a function sequence {B(n,x), n=0,1,...} be defined by ∫_[x,x+1] B(n,t)dt=x^n,then
B(0,x)=1, B(1,x)=x-1/2, B(2,x)=x^2-x+1/6,... and
B(n,x) is a polynomial of degree n and the leading coefficient of B(n, x) is 1.
(Namely, B(n,x)= x^n+ c1 x^(n-1) + c2 x^(n-2) + ...+ c(n) )
So, B(0,x), B(1,x), ..., B(n,x) is a basis of the space {p(x) | degree(p) < n+1},
then x^n = B(n,x)+c1 B(n-1,x) + c2 B(n-2, x) + ...+cn B(0,x)
1^a+2^a +...+n^a = ∫_[1~2] B(a,t)dt+∫_[2~3] B(a,t)dt+ ...+∫_[n~n+1] B(a,t) dt
=∫_[1~n+1] B(a, t) dt
=∫_[1~n+1] [t^a + c1 t^(a-1)+...] dt
= [t^(a+1) /(a+1) + ... ] for t=1~n+1
= [(n+1)^(a+1) /(a+1)+...]
= [n^(a+1) /(a+1)+...] is a poly. of deg. a+1 and its leading coef. is 1/(a+1).
Case 2: a > -1
Consider lim(n→∞) (1^a+2^a+...+n^a)/n^(a+1)
=lim(n→∞) ∑_[k=1~n] (1/n) (k/n)^a
=∫_[0~1] x^a dx (Riemann's sum)
= 1/(a+1)
so 1^a+2^a+...+n^a ~ O(n^(a+1)) (big O)