✔ 最佳答案
Q3
Total P=3MPa, Total temp (T0)=350'C=623K.
Static P=1.6MPa
Isentropic relationship: T/[P^(k-1)/k] const,
(3/1.6)^(k-1)/k = 623/T
T=484K=211'C
Jet vel (Vj):
0.5(Vj)^2=Cp(T0-T)
0.5(Vj)^2=5200(623-484)
Vj=1202.33m/s (very fast)
Hence, assume nozzle is choked (Mach 1)
Compressible flow function for mass flow rate FOR HELIUM at Mach 1:
[m (Cp T0)^0.5] / [A P0] = 1.1472 (too difficult to type the formula here. Pls look up yourself)
m=0.5, Cp=5200, T0=623, P0=3E6
Hence A=2.615E-4 m^2.
Q7
Water is virtually incompressible.
Use steam tables:
Specific vol at 0.08bar = 0.001008kg/cu m
Specific vol at 15bar = 0.001154kg/cu m
Mean = 0.001081 kg/cu m (good est.)
Isentropic Pump work
=(specific vol)*(P2-P1)
=0.001081 (15-0.08)(100,000)
=1.937kJ/kg
Isen. Eff=0.75=1.937/(Actual work)
Actual work=2.583kJ/kg
Use steam tables, pump entry specific enthalpy (h1)=173.8kJ/kg (fusion at 0.08bar)
Specific enthalpy at pump exit (h2)=183.8 + 2.583=176.4kJ/kg
Use steam tables, turbine entry specific enthalpy (h3)=3256.4 kJ/kg
Turbine entry specific entropy (s3)=7.2981 kJ/kg
If turbine is isentropic, turbine exit entropy (s4s)= 7.2981 kJ/kgK
At 0.08bar, use steam tables, specific entropy ('s') of:
Fusion=0.592 kJ/kgK
Evaporation=8.227 kJ/kgK
Using ratio, dryness fraction (y):
0.592(1-y)+8.227y = 7.2981
y=0.8783 (87.8% of the water is steam)
Use steam tables, specific ENTHALPY (h) of:
Fusion=173.8 kJ/kg
Evaporation=2576.2 kJ/kg
Using ratios, isentropic turbine exit enthalpy (h4s)=2283.9 kJ/kg
Turbine eff. = 0.82= (entry h3 – real exit h4) / (entry h3 – isen. exit h4s)
0.82=(3256.4 – h4) / (3256.4 – 2283.9)
h4=2459.0 kJ/kg
Hence
Pump work=2.583 kJ/kg
Heat in = 3256.4-176.4=3080.0 kJ/kg
Turbine work=3256.4-2459.0=797.4 kJ/kg
(Note pump work is much smaller than turbine work or heat in)
Thermal eff.=(797.4-2.583)/3080.0 = 0.258
Power out (Note 850 kg PER MINUTE. Power is PER SECOND)
=(797.4 - 2.583)(850/60)kW
=11260kW
=11.26MW.
More on comments.
Sorry. I don't know how to do (2).
2013-11-09 18:37:16 補充:
Q8
Entrance=293K, Turbine entry=1473K
Isentropic relationship: T/[P^(k-1)/k] const,
Ideal compressor exit:
(1.8/0.1)^(1.4-1)/(1.4) = T2s/293
T2s=669K
Isen. Eff=0.78= (669-293) / (T2-293)
Actual compressor exit:
T2=775K
Ideal turbine exit:
(1.8/0.1)^(1.4-1)/(1.4) = 1473/T4s
T4s=645K
2013-11-09 18:38:49 補充:
Isen. Eff=0.83= (1473-T4) / (1473-645)
Actual turbine exit:
T4=785.8K
Compressor Work = 1005(775-293)=484.4kJ/kg
Heat=1005(1473-775)=701.5kJ/kg
Turbine Work=1005(1473-785.8)=690.6kJ/kg
Net work=690.6-484.4=206.2kJ/kg
Thermal eff. = 206.2/701.5=0.294
Back work ratio= Comp./Turb.=484.4/690.6=0.701
2013-11-09 18:43:43 補充:
Brayton cyc
1) Improve machine eff. Modern comp. and turb. eff around 90%.
2) Higher pressure
3) Higher turbine entry temperature.
Rankine cyc
1) Improve machine eff.
2) Higher pressure, normally 150bar
3) Reheat. e.g. HP turbine 150bar to 40bar. Then reheat to 400'C & use an LP turbine.
2013-11-10 11:46:20 補充:
(2) Power = I^2 R=0.25W.
Inlet is ideal gas.
M*R=8314.3
M of NH4=14+1*4=18
R=461.9 J/kg K
P=(rho)RT
0.1E6=(rho)(461.9)(27+273)
rho=0.7217kg/m^3
I^2 R=mass flow rate*Cp*(Tout-Tin)
0.25=[(0.7217)*(0.000041)] Cp (31.1-27)
Cp=2060.7 J/kgK
Ideal gas: Cp-Cv=R
2060.7-Cv=461.9
Cv=1598.8 J/kgK