maths plz help

2013-11-07 6:12 am
a^2+b^2+c^2+d^2=3(a+b+c+d) 有少組正整數解?
更新1:

a^2+b^2+c^2+d^2=3(a+b+c+d) 有多少組正整數解?

回答 (2)

2013-11-07 10:23 am
✔ 最佳答案
a^2+b^2+c^2+d^2=3(a+b+c+d) 有多少組正整數解?
Sol
a^2+b^2+c^2+d^2=3(a+b+c+d)
(a^2-3a)+(b^2-3b)+(c^2-3c)+(d^2-3d)=0
(a^2-3a+9/4)+(b^2-3b+9/4)+(c^2-3c+9/4)+(d^2-3d+9/4)=9
(a-3/2)^2+(b-3/2)^2+(c-3/2)^2+(d-3/2)^2=9
(2a-3)^2+(2b-3)^2+(2c-3)^2+(2d-3)^2=36
36=1+1+9+25=9+9+9+9
(1) 36=1+1+9+25
2p-3=-1 =>p=1
2p-3=1 =>p=2
2p-3=3 =>p=3
2p-3=5 =>p=4
1,1,3,4=>4!/(2!1!1!)=12
1,2,3,4=>4!/(1!1!1!)=24
2,2,3,4=>4!/(2!1!1!1!)=12
(2) 36=9+9+9+9
2p-3=3 =>p=3
3,3,3,3=>4!/(1!1!1!1!)=1
12+24+12+1=49
有49組正整數解


2013-11-10 12:04 am
abcd(a+b+c+d)=(a+b+c+d)/3
abcd=3
參考: 自己


收錄日期: 2021-04-30 18:00:39
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20131106000051KK00225

檢視 Wayback Machine 備份