A square Matrix A is called skew-symmetric if A^T = -A.
Prove:
a) If A is an invertible skew-symmetric matrix,then A^-1 is skew-symmetric.
b) If A and B are skew-symmetric, then so are A^T , A+B, A-B and kA for any scalar k.
收錄日期: 2021-04-13 19:47:50
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20131106000051KK00167