F.4 Maths

2013-10-30 6:49 pm
1.Consider a function f(x)=3x^2 -9x +4 such that f(a)=f(b), WHERE a is not equal b.
(a)Find the value of a+b.
(b)Hence find f(a+b).
2.Consider a function f(x)=ax^2 +bx +c. If f(0)=3, f(2)=13 andf(4)=55, find the values of a, b, and c.

回答 (4)

2013-10-30 7:11 pm
✔ 最佳答案
1a. f(a) = f(b)==> 3a^2 - 9a + 4 = 3b^2 - 9b + 4==> 3(a^2 - b^2) - 9(a - b) = 0==> 3(a - b)(a + b - 3) = 0==> a - b = 0 (rej as a is not equal to b) or a + b = 3Therefore, a + b = 31b. f(a + b)= f(3)= 3*3^2 - 9*3 + 4= 27 - 27 + 4= 4
2. f(0) = c = 3 .................... (i)f(2) = 4a + 2b + c = 13 ..... (ii)f(4) = 16a + 4b + c = 55 ... (iii)Solve (i), (ii), (iii), we get,a = 4, b = -3, c = 3
2013-10-31 1:50 am
[ 被檢舉為違規,請看我 ],你個新名好「得意」。

同邊個有仇呀?
2013-10-31 12:08 am
第一題其實是好的題目~

努力呀~ smile~

2013-10-30 18:21:17 補充:
如果公開了,可能會引起更大的廻響~

我只想息事寧人,希望不要再被胡亂檢舉~

^__^
2013-10-30 11:14 pm
1.Consider a function f(x)=3x^2-9x+4 such that f(a)=f(b),where a is not equal b
(a)Find the value of a+b
Sol
a<>b
設 f(x)=3x^2-9x+4=3[x-(a+b)/2]^2+p
-9=3*[-2(a+b)/2]
a+b=3
(b)Hence find f(a+b)
f(3)=27-27+4=4

2.Consider a function f(x)=ax^2+bx+c,If f(0)=3,f(2)=13 andf(4)=55,find the values
of a,b and c
Sol
設 f(x)=a(x-0)(x-2)+p(x-0)+3
f(2)=2p+3=13
p=5
f(x)=a(x-0)(x-2)+5(x-0)+3
f(4)=a*4*2+5*4+3=55
8a=32
a=4
f(x)=4(x-0)(x-2)+5(x-0)+3=(4x^2-8x)+5x+3=4x^2-3x+3
a=4,b=-3,c=3




收錄日期: 2021-04-27 20:33:48
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20131030000051KK00038

檢視 Wayback Machine 備份