F.4函數的記法

2013-10-30 6:30 am
1.已知h(x) =x^2+(3k-1)x,其中k為常數。若h(1)=h(3),求h(5)的值。

2.已知g(t) =1」t+2,求下列各項的值。

a) 2-g(2)

b) 1+g(-1)

c) 2× g(1」2)

謝謝!!
更新1:

2.已知g(t) =1___,求下列各項的值。題目應該是1是分子,t+2是分母。 t+2

更新2:

2a答案應該係7」4

回答 (2)

2013-10-30 3:56 pm
✔ 最佳答案
1.已知h(x)=x^2+(3k-1)x,其中k為常數。若h(1)=h(3),求h(5)的值
Sol
h(1)=1+3k-1=3k
h(3)=9+3(3k-1)=9k+6
3k=9k+6
6k=-6
k=-1
h(x)=x^2-4x
h(5)=25-20=5
or
h(1)=h(3),(1+3)/2=2
h(x)=(x-2)^2+p=x^2-4x+4+p
4+p=0
p=-4
h(x)=(x-2)^2-4
h(5)=9-4=5

2.已知g(t) =1/(t+2),求下列各項的值
a) 2-g(2)
=2-1/(2+2)
=2-1/4
=7/4
b) 1+g(-1)
=1+1/1
=2
c) 2g(1/2)
=2*1/(1/2+2)
=2*2/5
=4/5

3.已知g(t) =1/t+2,求下列各項的值
a) 2-g(2)
=2-(1/2+2)
=-1/2
b) 1+g(-1)
=1+(-1+2)
=2
c) 2g(1/2)
=2*(1/2+2)
=1+4
=5


2013-10-30 6:32 am
1/t + 2 還是 1/(t+2) ?

2013-10-29 23:42:59 補充:
h(x) = x² + (3k-1)x

h(1) = h(3)

1² + (3k-1)(1) = 3² + (3k-1)(3)

1 + 3k - 1 = 9 + 9k - 3

6k = -6

k = -1

h(5) = 5² + (-3-1)5 = 25 - 20 = 5


收錄日期: 2021-04-30 18:11:26
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20131029000051KK00326

檢視 Wayback Machine 備份