F.4 Maths Function questions

2013-10-27 5:39 am
I have 2 questions
1.
http://i1186.photobucket.com/albums/z369/kk3796797/IMG_4539_zps18170985.jpg

I don't know how to calculate part b

2.
http://i1186.photobucket.com/albums/z369/kk3796797/IMG_4540_zpse329f4f9.jpg

I don' know how to find the area as there is no any angles

please help!!
中英皆可!
thank you very much

回答 (3)

2013-10-28 2:56 am
✔ 最佳答案
既然是 F.4 數,應該不知郭老師的 part 1b 在做甚麼的。
我嘗試用你剛學完的 quadratic function 計算吧。
1a. Area of lawn is. :
(π/4) x^2 + 2x(10 - x) + (π/4)(10 - x)^2
= (π/2 - 2)x^2 + (20 - 5π)x + 25π
= (1/2)(π - 4)x^2 - 5(π - 4)x + 25π
= (1/2)(π - 4)(x^2 - 10x) + 25π
= (1/2)(π - 4)(x^2 - 10x + 25) + 25π - (25/2)(π - 4)
= (1/2)(π - 4)(x - 5)^2 + (25/2)(π + 4)

b. The max. of the lawn occurs when x = 5,
ie, max. area of the lawn is (25/2)(π + 4) m^2.

2. arc length (s) = rθ, area of sector = (1/2)r^2 θ = (1/2)rs
As OA : OB = 3 : 5, so OA : AB = 3 : 2, AB = 2(1 - x)
Therefore, OA = 3(1 - x) and OB = 5(1 - x)

a, A(x) = (1/2)(OB)(5x) - (1/2)(OA)(3x)
ie. A(x) = 8x(1 - x)

b. As there is no zero area, so the domain of A(x) : 0 < x < 1

c. A(x)
= 8x(1 - x)
= -2(4x^2 - 4x + 1) + 2
= -2(2x - 1)^2 + 2
Therefore, the max. area of ABCD occurs when x = 0.5,
ie. the max. area is 2 cm^2.
2013-10-27 9:46 am
OA : 2(1-x) = 3 : 2
OA = 3(1-x)

Then, you can solve the angle.
2013-10-27 9:16 am
Sorry! I don't know how to do Q2.


圖片參考:http://imgcld.yimg.com/8/n/HA00388954/o/20131027011506.jpg


2013-10-27 02:01:45 補充:
多謝提點,咁就易好多啦!等同學仔自己試試再算啦!

2013-10-27 02:54:10 補充:
第 2 題

a : A = (16x)(1-x) = 16x - 16x²

b : 0<= x <= 1

c : 4 square unit

如果仲係計唔到,在補充再問。

2013-10-28 12:46:29 補充:
那些年 ,多謝提醒,對提問者的幫助很大,

送佛送到西,YTC 留意!

下面 :

面積== (1/2)(π - 4)(x - 5)^2 + (25/2)(π + 4) 中

(π - 4) 為負數,因此,最大面積時是 (1/2)(π - 4)(x - 5)^2 = 0,即當x=5。

此外 arc length (s) = rθ 中 θ 是 radian 而不是 degree。


收錄日期: 2021-04-13 19:46:38
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20131026000051KK00209

檢視 Wayback Machine 備份