✔ 最佳答案
1. (x + y + z)² = x² + y² + z² + 2(xy + yz + zx)
==> xy + yz + zx = (a² - b)/2
(x + y + z)(x² + y² + z²) - (x³ + y³ + z³) = (x + y + z)(xy + yz + zx) - 3xyz
==> ab - c = a(a² - b)/2 - 3xyz
==> xyz = (a^3 + 2c - 3ab)/6
2,
a = x + y + z + t
b = x² + y² + z² + t²
c = x³ + y³ + z³ + t³
d = x⁴ + y⁴ + z⁴ + t⁴
Let
P2 = xy + xz + xt + yz + yt + zt
P3 = xyz + yzt + ztx + txy
P4 = xyzt
S2 = (xy)² + (xz)² + (xt)² + (yz)² + (yt)² + (zt)²
Therefore
a² = b + 2(P2)
==> P2 = (a² - b)/2
b² = d + 2(S2)
==> S2 = (b² - d)/2
ab - c = a(P2) - 3(P3)
==> P3 = (a^3 + 2c - 3ab)/6
ac - d = b(P2) - a(P3) + 4(P4)
==> ac - d = b(a² - b)/2 - a(a³ + 2c - 3ab)/6 + 4(P4)
==> P4 = (a⁴ + 8ac + 3b² - 6a²b - 6d)/24