數 學 問 題

2013-10-21 3:22 am
tanθ = 2+cosθ / 3sinθ (其中0° ≦ θ < 360° )

回答 (2)

2013-10-21 4:19 am
✔ 最佳答案
Tanθ=(2+Cosθ)/(3Sinθ) (其中0°<=θ<360°)
Sol
Tanθ =(2+Cosθ)/(3Sinθ)
Tanθ*3Sinθ=2+Cosθ
(Sinθ/Cosθ)*3Sinθ=2+Cosθ
3Sin^2 θ=2Cosθ+Cos^2 θ
3-3Cos^2 θ=2Cos+Cos^2θ
4Cos^2 θ+2Cosθ-3=0
Cosθ=[-2+√(4+48)]/8 (負不合)
Cosθ=0.65139
θ=49.35度 or θ=310.65度


2013-10-21 4:26 am
(=^o^=)
又係我啦~

根據你打的題目:
tanθ = 2 + cosθ / 3sinθ
tanθ = 2 + (cosθ/cosθ) / (3sinθ/cosθ)
tanθ = 2 + 1/ (3tanθ)
全式乘 3tanθ
3 tan²θ = 6 tanθ + 1
3 tan²θ - 6 tanθ - 1 = 0
3 tan²θ - 6 tanθ + 3 = 4
3 (tan²θ - 2 tanθ + 1) = 4
tan²θ - 2 tanθ + 1 = 4/3
(tanθ - 1)² = 4/3
tanθ - 1 = ±√(4/3)
tanθ = 1±√(4/3)
tanθ = 1± 2/√3
θ = 65.10390936° or 245.1039094° or 171.2060231° or 351.2060231°

如果萬一你打題目的意思是(只是萬一):
tanθ = (2 + cosθ) / 3sinθ
3sinθ tanθ = (2 + cosθ)
3sinθ (sinθ/cosθ) = (2 + cosθ)
3sin²θ = (2 + cosθ)cosθ
3sin²θ = 2cosθ + cos²θ
3(1-cos²θ) = 2cosθ + cos²θ
3 - 3cos²θ = 2cosθ + cos²θ
4cos²θ + 2cosθ - 3 = 0
cosθ = (-1+√13)/4 or (-1-√13)/4 (rejected)
θ = 49.35368063° or 310.6463194°


2013-10-20 20:47:12 補充:
可以考慮使用解二次方程的公式:

a x² + b x + c = 0
=> x = [ -b ±√(b² - 4ac) ] /(2a)

4cos²θ + 2cosθ - 3 = 0
 x = cosθ
 a = 4
 b = 2
 c = -3

cosθ = [ -2 ±√(2² - 4*4*(-3)) ] /(2*4)
cosθ = [ -2 ±√52 ] /8
cosθ = [ -1 ±√13 ] /4 〔外邊除2,即根號中除4〕


收錄日期: 2021-04-13 19:46:20
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20131020000051KK00264

檢視 Wayback Machine 備份