✔ 最佳答案
Let P(n) : 5^(2n-1) - 3^(2n-1) - 2^(2n-1) is divisible by 30
When n = 1,
5^(2-1) - 3^(2-1) - 2^(2-1)
= 5 - 3 - 2
= 0, which is divisible by 30
Therefore, P(1) is true
Assume P(k) is true,
ie. 5^(2k-1) - 3^(2k-1) - 2^(2k-1) = 30p, for some integers p.
When n = k+1
5^(2k+1) - 3^(2k+1) - 2^(2k+1)
= 25*5^(2k-1) - 9*3^(2k-1) - 4*2^(2k-1)
= (19 + 6)*5^(2k-1) - (19 - 10)*3^(2k-1) - (19 - 15)*2^(2k-1)
= 19*[5^(2k-1) - 3^(2k-1) - 2^(2k-1)] + 6*5^(2k-1) + 10*3^(2k-1) + 15*2^(2k-1)
= 19*30p + 6*5*5^(2k-2) + 10*3*3^(2k-2) + 15*2*2^(2k-2)
= 30[19p + 5^(2k-2) + 3^(2k-2) + 2^(2k-2)], which is divisible by 30
Therefore, P(k+1) is also true.
By the principle of MI, P(n) is true for all positive integers n.