✔ 最佳答案
1.
被除式
= (6x - 5)(3x - 2) + (- 6)
= 18x^2 - 12x - 15x + 10 - 6
= 18x^2 - 27x + 4
2.
設 f(x) = 4x^3 + kx^2 - 17x - 3。
f(3/4) = 0
4(3/4)^3 + k(3/4)^2 - 17(3/4) - 3 = 0
27/16 + (9/16)k - 51/4 - 3 = 0
(9/16)k - 225/16 = 0
(9/16)k = 225/16
9k = 225
k = 25
3.(a)
f(3) = 2(3)^3 - 8(3)^2 + 7(3) - 3
= 54 - 72 + 21 - 3
= 0
x-3 是 f(x) 的因式。
3.(b)
把 2x^3 - 8x^2 + 7x - 3 除以 x - 3 (用長除法),得出 :
2x^3 - 8x^2 + 7x - 3 = (x - 3)(2x^2 - 2x + 1)
f(x) = (x - 3)(2x^2 - 2x + 1)
由於 2x^2 - 2x + 1 不能再分解,所以答案是
(x - 3)(2x^2 - 2x + 1)。
4.
設 f(x) = 3x^3 + 2x^2 + ax + b。
f(1/2) = -17/8
3(1/2)^3 + 2(1/2)^2 + (1/2)a + b = -17/8
3/8 + 1/2 + (1/2)a + b = -17/8
7/8 + (1/2)a + b = -17/8
(1/2)a + b = -3
2[(1/2)a + b] = 2(-3)
a + 2b = - 6
a = -2b - 6 ......(1)
f(-2) = - 44
3(-2)^3 + 2(-2)^2 + (-2)a + b = - 44
-24 + 8 - 2a + b = - 44
-16 - 2a + b = - 44
- 2a + b = -28 ......(2)
把 (1) 代入 (2),可得 :
-2(-2b - 6) + b = -28
4b + 12 + b = -28
5b + 12 = -28
5b = - 40
b = - 8
把 b = - 8 代入 (1),可得 :
a = -2(- 8) - 6
a = 10