Linear Transformation with 2x2 Matrix Basis?

2013-10-05 5:48 am
1. The projection onto the x-axis given by T(x,y)=(x,0)
2. Reflection about the -axis
3. Reflection about the line y=x
4. Reflection about the y-axis
5. Counter-clockwise rotation by radians
6. Clockwise rotation by radians

A. [(0,-1), (1,0)]
B. [(-1,0), (0,1)]
C. [(1,0), (0,-1)]
D. [(0,1), (1,0)]
E. [(0,1), (-1,0)]
F. [(1,0), (0,0)]
G. None of the above

Could anyone explain this for me?
Matrix really hard :(

回答 (1)

2013-10-05 8:09 am
✔ 最佳答案
See where (1, 0) and (0, 1) are mapped...
(Let T be the given transformation.)
-------------
1) T(1, 0) = (1, 0) and T(0, 1) = (0, 0).
==> Choice F.

2) Assuming reflection about the x-axis:
T(1, 0) = (1, 0) and T(0, 1) = (0, -1).
==> Choice C.

3) T(1, 0) = (0, 1) and T(0, 1) = (1, 0).
==> Choice D.

4) T(1, 0) = (-1, 0) and T(0, 1) = (0, 1).
==> Choice B.

5/6) The number of radians are not given.
(Try to do these geometrically.)

I hope this helps!


收錄日期: 2021-04-13 22:09:58
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20131004214816AAKXuIb

檢視 Wayback Machine 備份