differentiation

2013-10-05 6:24 am
1. f(3)=1,f'(3)=-4,g(3)=-1,g'(3)=3
calculate
(f+g)'(3)=?
(f-g)'(3)=?
(fxg)'(3)=?
(f/g)'(3)=?

2. if d(f(4x^2))/dx=9x^3,find f'(x)

3.If a ball is thrown vertically upward from the roof of 64 foot building with a velocity of 32 ft/sec, its height after t seconds is s(t)=64+32t-16t^2

a.) What is the maximum height the ball reaches?

b.) What is the velocity of the ball when it hits the ground (height0 )?

回答 (2)

2013-10-05 6:44 am
✔ 最佳答案
1. f(3)=1,f'(3)=-4,g(3)=-1,g'(3)=3
calculate
(f+g)'(3)=?
(f-g)'(3)=?
(fxg)'(3)=?
(f/g)'(3)=?

d(f + g)/dx = df/dx + dg/dx
(f+g)' = f' + g'
(f+g)'(3) = f'(3) + g'(3) = -4 + 3 = -1

d(f - g)/dx = df/dx - dg/dx
(f-g)' = f' - g'
(f-g)'(3) = f'(3) - g'(3) = -4 - 3 = -7

d(fg)/dx = f(dg/dx) + g(df/dx)
(fxg)' = fg' + gf'
(fxg)'(3) = f(3)g'(3) + g(3)f'(3) = (1)(3) + (-1)(-4) = 3 + 4 = 7

2013-10-04 22:51:11 補充:
其實,這是 + - × ÷ 的公式的代入,初時對 df/dx 和 f' 之類的寫法不習慣,會感到困難,但你看完我為你做的 3 條之後,應該在感覺上會好了一些,自己試除式啦!它是很複雜的,小心去做,做唔到的話,再問。

2013-10-04 23:05:07 補充:
df(4x^2)/dx = 9x^3

設 y = 4x^2 則有

df(y)/dx = 9x^3

[df(y)/dy][dy/dx] = 9x^3

[df(y)/dy][8x] = 9x^3

[df(y)/dy] = (9/8)x^2

df(y)/dy = (9/8)(4x^2/4) = (9/8)(y/4) = (9/32)y

y 和 x 都只是符號一個,所以 df(x)/dx = (9/32)x

2013-10-04 23:10:00 補充:
s(t)=64+32t-16t^2

s'(t) = 32 - 32t

s''(t) = -32 ; s''(t)<0 ; that means when s'(t) = 0 is a max.

when s'(t) = 0 ==> 32 - 32t = 0 ; t = 1

max. height = s(1) = 64 + 32(1) - 16(1)^2 = 64 + 32 - 16 = 80 ft

2013-10-04 23:21:16 補充:
velocity = s'(t) = 32 - 32t ;

when the ball hits the ground s(t) = 0

0=64+32t-16t^2

16t^2 - 32t - 64 = 0

t^2 - 2t - 4 = 0

t = [2±√(4+16)]/2

t = 1±√5 = 3.236 or -1.236(reject)

代入 velocity = s'(t) = 32 - 32t 便完成了。 = -71.552 ft/s。

這是一個負數,它是正確的,負數代表什麼意思呢?想想!想想!
2013-10-06 4:54 am
http://***** 這家不錯超3A品質,買幾次啦,跟真的一樣。
儅傦呀咈偞免厙


收錄日期: 2021-04-16 16:21:33
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20131004000051KK00173

檢視 Wayback Machine 備份