✔ 最佳答案
1^2 + 2^2 + 3^2 + ... + n^2
= n(n + 1)(2n + 1)/6
1^2 + 3^2 + 5^2 + ... + (2n - 1)^2
= n(2n - 1)(2n + 1)/3
2^2 + 4^2 + 6^2 + ... + 2n^2
= 2n(n + 1)(2n + 1)/3
2013-10-03 19:16:51 補充:
漏咗括號添,第三條係:
2^2 + 4^2 + 6^2 + ... + (2n)^2
= 2n(n + 1)(2n + 1)/3
2013-10-06 07:12:28 補充:
另類方法:利用以下公式
1x2 + 2x3 + 3x4 + ... + n(n+1) = n(n+1)(n+2)/3
所以
1^2 + 3^2 + 5^2 + ... + n^2
= 1x(0+2)/2 + 3x(2+4)/2 + 5x(4+6)/2 + ... + n[(n-1)+(n+1)]/2
= [1x2 + 2x3 + 3x4 + ... + n(n+1)]/2
= [n(n+1)(n+2)/3]/2
= n(n+1)(n+2)/6
而且
2013-10-06 07:15:48 補充:
2^2 + 4^2 + 6^2 + ... + n^2
= 2x(1+3)/2 + 4x(3+5)/2 + 6x(5+7)/2 + ... + n[(n-1)+(n+1)]/2
= [1x2 + 2x3 + 3x4 + ... + n(n+1)]/2
= [n(n+1)(n+2)/3]/2
= n(n+1)(n+2)/6
及
1x2 + 2x3 + 3x4 + ... + (n-1)n = (n-1)n(n+1)/3
所以
2013-10-06 07:20:08 補充:
1^2 + 2^2 + 3^2 + 4^2 + 5^2 + 6^2 + ... + (n-1)^2 + n^2
= n(n+1)(n+2)/6 + (n-1)n(n+1)/6
= n(n+1)(n+2 + n-1)/6
= n(n+1)(2n+1)/6