Continuity!!!

2013-10-01 9:25 pm
1)At which points, if any, are the functions discontinuous?
f(x) = 1/[(4 - x^2)^0.5]

2)Find the value of a so that the following function is continuous everywhere.
r(x) = x^2 - 1 for x=<1 ;
3x^3 + a for x>1

回答 (2)

2013-10-01 10:46 pm
✔ 最佳答案
1 If the denominator is zero, then the function will be discontinuous at that point

So, let (4 - x^2)^0.5 = 0

x^2 = 4 => x = -2 or 2

The function is discontinuous when x = -2, 2

2 The left hand limit and right hand limit of a function should be equal in order that the function is continuous at that point

So, lim (x-> 1-) f(x) = limit (x->1+) f(x)

lim (x-> 1-) x^2 - 1 = lim (x-> 1+) 3x^3 + a

0 = 3 + a

a = -3
2013-10-01 9:51 pm
1. 當 x = +2 或 -2 時 (4 - x^2)^0.5 會等於 0 ,形成 1 / 0,所以在 x = -2 和 x = +2 會不連續。

2. 睇唔出有什麼地方會不連續。


收錄日期: 2021-04-27 20:36:13
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20131001000051KK00100

檢視 Wayback Machine 備份