Global extremum problem

2013-10-01 3:42 am
Consider f(x)=(e^x-1)/x.
a) Prove that f(x) is increasing at 0<x<infinity.
b) Hence, find the global maximum and global minimum of f(x).

回答 (1)

2013-10-01 6:13 am
✔ 最佳答案
f(x)=(e^x-1)/x

f'(x) = [xe^x - (e^x - 1)]/x^2
= (xe^x - e^x + 1)/x^2

現在看f'(x)的分子,令其為g(x) = xe^x - e^x + 1

g'(x) = e^x + xe^x - e^x = xe^x >0, for x > 0

g 在 (0, inf) 遞增,且g(0) = 0

所以 g >=0 on [0, inf)

=> f'(x) > 0 on (0, inf)

=> f(x) is increasing at 0<x<infinity

b)考慮 f'(x) = 0 或不存在之處
f'(x) = 0 <=> g(x) = 0

因為g'(x) = e^x + xe^x - e^x = xe^x
若g' > 0 <=> x > 0 <=> g 在x > 0 遞增
若g' < 0 <=> x < 0 <=> g 在x < 0 遞減
且g(0) = 0,所以g>=0

=> 只有x = 0,g(x) = 0

f' 不存在只發生在分母為零,也就是x = 0
又,x^2 >=0 ,所以只要考慮g(x)即可。

∵g > 0 for all x on R=> f' > 0 on (-inf, 0) => f is increasing on (-inf , 0)
and f' > 0 on (0, inf) => f is increasing on (0, inf)
所以f(0)沒有相對極值 => f 在R沒有相對極大、相對極小。


收錄日期: 2021-04-13 19:45:06
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20130930000051KK00206

檢視 Wayback Machine 備份