✔ 最佳答案
1) L(x) = √[(x-0.2)²+(x²-2.7)²]
呢條唔係問題。
2) L'(x)係咩?
L'(x)
= (½)[(x-0.2)²+(x²-2.7)²]^(-½) * [2(x-0.2) + 2(x²-2.7)(2x)]
= (½)[(x-0.2)²+(x²-2.7)²]^(-½) * [2x - 0.4 + 4x³ - 10.8x]
= (½)[(x-0.2)²+(x²-2.7)²]^(-½) * (4x³ - 8.8x - 0.4)
= [(x-0.2)²+(x²-2.7)²]^(-½) * (2x³ - 4.4x - 0.2)
= 2(x³ - 2.2x - 0.1)/√[(x-0.2)²+(x²-2.7)²]
3) L'(x)=0,x係幾多?
For L'(x) = 0,
x³ - 2.2x - 0.1 = 0
x = -1.45997, -0.0454974, 1.50546
http://www.wolframalpha.com/input/?t=crmtb01&f=ob&i=(2x%C2%B3%20-%204.4x%20-%200.2)
http://www.wolframalpha.com/input/?i=√%5B%28x-0.2%29²%2B%28x²-2.7%29²%5D
2013-09-18 13:33:34 補充:
嗯, 你好~
以上的(2)已經有steps,我相信你想問(3)。
由於你見到三個roots都唔係rational,所以你只可以用approximation的方法得出,例如bisection, Newton's method 等等。
注意你現在要solve x³ - 2.2x - 0.1 = 0
設 f(x) = x³ - 2.2x - 0.1
然後觀察 f(-2) < 0, f(-1) >0 , f(0) < 0, f(2) > 0
得知有roots於 (-2, -1), (-1, 0), 及 (0,2)
然後慢慢縮窄interval 以得出較準確的數值。