A.maths inequality

2013-09-12 5:34 am
(a) Show that [(a+b)/2]^2 >= ab
(b) Show that [(a+b+c+d)/4]^4 >= abcd
(c) Using (b), show that (a+b+c)/3]^3 >= abc
更新1:

If a,b,c are positive numbers. thankyou!

回答 (2)

2013-09-12 6:50 am
✔ 最佳答案
典型 Pure Math 題。


圖片參考:http://imgcld.yimg.com/8/n/HA00430218/o/20130911224955.jpg


2013-09-11 23:16:30 補充:
對對對!
很有道理~

相信題目應該要說清是 non-negative numbers.
2013-09-12 6:05 am
a , b , c ≥ 0 ??

2013-09-11 23:09:32 補充:
c) 部也可令 d = (a+b+c)/3 , 則
[( a + b + c + (a+b+c)/3 ) / 4]⁴≥ abc(a+b+c)/3
[(a + b + c) / 3]⁴≥ abc(a+b+c)/3
[(a + b + c) / 3]³ ≥ abc


收錄日期: 2021-04-21 22:26:38
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20130911000051KK00230

檢視 Wayback Machine 備份