✔ 最佳答案
高三下數學問題(1) y(x)=x^3-3x^2-9x+ky'(x)=3x^2-6x-9=3(x+1)(x-3)=0x=3, -1y"(x)=6x-6y"(3)=18-6=12>0 => miny"(-1)=-6-6=-12<0 => maxy(3)=27-27-27+k=-27+k=min>=0 => k<=27 x=3, y(3)=最低點(負值), 往右上可以交正根, 往左上也可以交正根y(0)=k>=0 => 交在+y軸, 往左下可以交負根So 27>=k>=0......ans
(2) 36=4x^2+9y^2 => y^2=(36-4x^2)/9F(x)=6x^2+3xy^2+4x=6x^2+x(36-4x^2)/3+4x=(18x^2+36x-4x^3+12x)/3=(-4x^3+18x^2+48x)/3F'(x)=(-12x^2+36x+48)/3=-4x^2+12x+16=-4(x^2-3x-4)=-4(x-4)(x+1)=0x=4>3(超過橢圓右側) => 取x=3, or x=-1max=f(3)=(-4*27+18*9+48*3)/3=-4*9+18*3+48=-36+54+48=66.......ansmin=f(-1)=(4*1+18*1-48*1)/3=-26/3........ans
(3) 設直線為y=mx相切F(x)則: mx=F(x)=x^3+kx^2+1 => x^3+kx^2-mx+1=0......a且: m=F'(x)=3x^2+2kx => 3x^2+2kx-m=0...........bb的判別式=0=k^2+3m => m=-k^2/3.................cc代入b: 0=9x^2+6kx+k^2=(3x+k)^2 => x=-k/3......dc,d代入a:0=-k^3/27+k^3/9-k^3/9+1k^3/27=1 => k^3=27 => k=3......ans
2013-08-29 10:30:49 補充:
修正(1) 27>=k>0
2013-08-31 07:58:59 補充:
補充:
k=三根乘積(兩正一負)>0