✔ 最佳答案
1.己知直線L1: 7x-3y+13=0 與直線 L2: 3x-2y+7=0 相交於Q點。若一直線L通過Q和原點,求L的方程。
First,find the point Q by L1 and L2
from L1
7x-3y+13=0
7x=3y-13
x=(3y-13)/7 ...... (1)
sub (1) into L2
3((3y-13)/7)-2y+7=0
9y-39-14y+49=0
-5y+10=0
y=2
sub y=5/4 into L1
7x-3(2)+13=0
x=1
Q(1,2)
Then,as 直線L通過Q和原點 (0,0) ,so we can find L by point Q和原點.
slope of L= (2-0)/(1-0) =2
the eqt. of L:
2(x-1)=y-2
2x-2=y-2
2x-y=0
//
2.若直線L1: 3x-y+8=0 和L2相交於x軸上且L1垂直L2。
a.求L1的斜率
L1的斜率= -A/B = 3
b.求L2的x截距。
∵直線L1: 3x-y+8=0 和L2相交於x軸上
∴L2的x截距=L1的x軸距
= -C/A
= -8/3
c.求L2的方程。
∵L1垂直L2
∴slope of L2 X slope of L1= -1
slope of L2= -1/3
th eqt. of L2:
-1/3(x-(-8/3))=y-0
x+8/3= -3y
3x+9y+8=0
//
3.已知直線L1: 9x-py-6=0 與直線L2: 12x+2y+q=0 的方程,若L1和L2有無限個交點,求p和q的值。
ML1=ML2
9/p= -12/2
18= -12p
p=3/2
L1的y截距=L2的y截距
-6/p= q/2
-p=3q ...... (1)
sub p=3/2 into (1)
-3/2=3q
-3=6q
q=-1/2
//
ur ans in Q3 is incorrect as u have the wrong concept on the step of 比較L1和L2
比較L1和L2
-py+9x-6=2y+12x+q
4/3 (-py+9x-6) =2y+12x+q
4/3*-py+12x-8=2y+12x+q
when both side have 12x ,u can to compare.
2013-08-15 18:21:55 補充:
4. 用平方根法解下列各方程。
(x+3)^2-64=0
x^2+6x+9-64=0
(x+11)(x-5)
X= -11 X=5