✔ 最佳答案
Let α, β be two sequences satisfied
(i) α(n)+β(n)=-α(n-1)
(ii) α(n)β(n)=β(n-1)
(iii) α(-1):=a≠0 β(-1):=b≠0
(iv) β(n)≥α(n)
∀n=0, 1, 2, ...
if a^2-4b≥0 where a and b are real rumbers, do (α(n))^2-4β(n)≥0 ∀n=0, 1, 2, ...?
these two questions are equivalent, which is trivial.
Suppose ∀n, (α(n))^2-4β(n)≥0, then(α(n))^2≥4β(n), which implies
(a) α(n)≥4 or α(n)≤0 ∀n
and
(b) β(n)≥4 or β(n)≤0 ∀n by (iv)
Then it will lead three possible situations:
(1) α(n)≥4 and β(n)≥4
(2) α(n)≤0and β(n)≥4
(3) α(n)≤0and β(n)≤0 ∀n by (iv)
but the fact is,
(i) α(n)+β(n)=-α(n-1)
(ii) α(n)β(n)=β(n-1)
So ∀n
(1) α(n)≥4 and β(n)≥4
α(n)≥4≥0 and β(n)≥4≥0 ∀n
so α(n-1)≥4≥0
but α(n)+β(n)≥8
⇒α(n-1)≤-8 (→←)
(2) α(n)≤0 and β(n)≥4
α(n)≤0 and β(n)≥4≥0 ∀n
so β(n-1)≥4≥0
but α(n)β(n)≤0
⇒β(n-1)≤0 (→←)
(3) α(n)≤0 and β(n)≤0
α(n)≤0 and β(n)≤0 ∀n
but α(n)β(n)≥0
⇒β(n-1)≥0
and α(n)+β(n)≤0
⇒-α(n)≤0
⇒α(n)≥0
The only possible situation is
α(n)=0 and β(n)=0
but it implies a=0 and b=0 (→←)
So ∃n s.t. (α(n))^2-4β(n)<0 i.e. ∃n s.t. α(n), β(n)∈ℂ\ℝ