F.4 數學問題 (一元二次方程)(2)

2013-08-03 3:24 pm
1. 一個直角三角形的高和周界分別是 x cm 和 40 cm。
若底的長度比高的兩倍少 1 cm,求 x 的值。

2. 培德和慧敏分別站在巴士站的南方和東方,兩人相距
60 m。兩人同時以固定速率走向巴士站。6 秒後,兩
人與巴士站的距離都是 27 m。若慧敏走得比培德慢
2 m/s,求兩人的速率。

THX
更新1:

3. 若 (x - 3)(x - 4) = (a - 3)(a - 4),則 x = A. 3 或 4 B. a 或 3 C. a 或 4 D. a 或 7 - a (答案是 D,求步驟。)

回答 (1)

2013-08-03 4:12 pm
✔ 最佳答案
1.
Let y = hypotenuse of triangle.
x + (2x - 1) + y = 40
y = 41 - 3x .............(1)
By Pythagoras thm.,
x^2 + (2x - 1)^2 = y^2........(2)
So x^2 + (2x - 1)^2 = (41 - 3x)^2
x^2 + 4x^2 + 1 - 4x = 1681 + 9x^2 - 246x
4x^2 - 242x + 1680 = 0
2x^2 - 121x + 840 = 0
(x - 8)(2x - 105) = 0
x = 8 or 52.5 (rej because perimeter is 40 only.)





2013-08-03 08:18:35 補充:
2. Let speed of 慧敏 = x m/s. So speed of the other one = (x + 2) m/s.
After 6 sec., distance from the bus station = 27m. So 6 sec. EARLIER, distance of 慧敏 from the station = (27 + 6x) m. Distance of the other one from the station = 27 + 6(x + 2) = (6x + 39) m.

2013-08-03 08:27:27 補充:
By Pythagoras thm., (6x + 27)^2 + (6x + 39)^2 = 60^2. That is 4x^2 + 44x - 75 = 0. Solving equation we get x = 3/2 or - 25/2 ( rej because speed cannot be negative). So speed of 慧敏 is 1.5 m/s, speed of the other one is 3.5 m/s.

2013-08-03 08:36:07 補充:
To be exact, the answer of - 25/2 is correct if 慧敏 is standing in the west and the other one is standing in the north at the beginning.

2013-08-03 15:00:40 補充:
3. Obviously, one of the answer is x = a. Expanding LHS : x^2 - 7x + 12 - (a - 3)(a - 4) = 0.
Sum of roots = 7, one of the roots is a, so the other root = 7 - a. Answer is D.


收錄日期: 2021-04-25 22:40:14
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20130803000051KK00052

檢視 Wayback Machine 備份