求解數學 難

2013-08-03 1:32 am
consider the question

X * Uxy - YUyy - Uy = 0


use new variables (V,W) defined by V=X, W=XY to transform it into the equation


Uvw = 0

Hence show that the general solution of the PDE is

u(X,Y) = F(x) + G(xy)
更新1:

find the solution which matches the boundary conditions u(x,0) = x^2 + 1 and u(1,y)=2e^-y

回答 (1)

2013-08-03 4:11 am
✔ 最佳答案
﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣

圖片參考:http://imgcld.yimg.com/8/n/HA05107138/o/20130802201036.jpg


2013-08-02 20:56:51 補充:
u(x,y)=f(x)+g(xy)
u(x,0)=f(x)+g(0)=x^2+1=>f(x)=x^2+1-g(0)
u(1,y)=f(1)+g(y)=2e^(-y)=>g(y)=2e^(-y)-f(1)
Hence u(x,y)=f(x)+g(xy)=x^2+1-g(0)+2e^(-xy)-f(1)
u(x,0)=x^2+1-g(0)+2-f(1)=x^2+1
=>g(0)+f(1)=2
So u(x,y)=x^2+2e^(-xy)-1


收錄日期: 2021-04-23 23:26:02
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20130802000051KK00218

檢視 Wayback Machine 備份