math questions help!!

2013-07-31 4:43 am
show the steps please:(

In the triangle ABC, ABC angle B = 90 degrees, AC=root 2 and AB=BC+1

a) show that cos A(angle)-sinA(angle)=1/root 2

b) by squaring both sides of the equation in part (a)
solve the equation to find the angles in the triangle

c) Apply pythagoras theorem in the triangle ABC to find BC, and hence show that
sin A= root 6 - root 2 / 4


d) hence, or otherwise, claculate the length of the perpendicular from B to [AC]



THANKS ><

回答 (1)

2013-07-31 7:51 am
✔ 最佳答案
(a) cos A - sinA
= AB/AC - BC/AC
= (AB - BC)/AC
= (BC + 1 - BC) / (root 2)
= 1/root 2

(b) (cos A - sinA)^2 = (1/root 2)^2
(cos A)^2 - 2(cos A)(sin A) + (sin A)^2 = 1/2
(sin A)^2 + (cos A)^2 - 2(cos A)(sin A) = 1/2
1 - 2(cos A)(sin A) = 1/2
- sin(2A) = - 1/2
sin(2A) = 1/2
2A = 30(degree) or [150(degree)]rejected
so, A = 15(degree)

(c) AC^2 = AB^2 + BC^2
(root 2)^2 = (BC + 1)^2 + BC^2
2 = BC^2 + 2BC + 1 + BC^2
2(BC^2) + 2BC - 1 = 0
BC = { -2 ± root [2^2 - 4(2)(-1)] } / [2(2)]
BC = ( -2 ± root 12 )/4
BC = ( -2 ± 2 * root 3 )/4
BC = ( -1 + root 3 )/2 or [( -1 - root 3 )/2]rejected
(as BC(length) cannot be negative)
so, BC = ( -1 + root 3 )/2

sin A = BC/AC
sin A = [ ( -1 + root 3 )/2 ] / (root 2)
sin A = ( -1 + root 3 ) / (2 * root 2)
sin A = [ ( -1 + root 3 )(root 2) ] / [ (2 * root 2)(root 2) ]
sin A = [ - root 2 + (root 3)(root 2) ] / (2 * 2)
sin A = [ - root 2 + root (3 * 2) ] / 4
sin A = [ - root 2 + root 6 ] / 4
sin A = (root 6 - root 2) / 4

(d) let the length of the perpendicular from B to AC be h
you may reference
http://www.analyzemath.com/Geometry_calculators/area_triangle_sine.html
(1/2)(AC)(AB)(sin A) = (1/2)(h)(AC)
(AC)(AB)(sin A) = (h)(AC)
(AB)(sin A) = h
h = (AB)(sin A)
h = (BC+1)(sin A)
h = [ ( -1 + root 3 )/2 + 1 ] [ (root 6 - root 2) / 4 ]
(using results from BC and sin A)
h = { [ ( -1 + root 3 ) + 2 ] / 2 } [ (root 6 - root 2) / 4 ]
h = (1 + root 3) (root 6 - root 2) / (2 * 4)
h = [ root 6 - root 2+ (root 3)(root 6) - (root 3)(root 2) ] / 8
h = (root 6 - root 2+ root 18 - root 6) / 8
h = ( - root 2+ 3 * root 2 ) / 8
h = 2 * root 2 / 8
h = (root 2) / 4
so, the length of the perpendicular from B to AC is (root 2) / 4
參考: myself


收錄日期: 2021-04-30 17:49:24
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20130730000051KK00313

檢視 Wayback Machine 備份