✔ 最佳答案
|z - 3| + |z + 3| = 10
情況一:當 z ≤ -3
|z - 3| = -(z - 3) 及 |z + 3| = -(z + 3)
所以 -(z - 3)- (z + 3) = 10 及 z ≤ 3
-z + 3 - z - 3= 10 及 z ≤ 3
-2z = 10 及 z ≤ 3
z = -5 及 z ≤ -3
故情況一的解為 z = -5
情況二:當 -3 ≤ z ≤ 3
|z - 3| = -(z - 3) 及 |z + 3| = z + 3
所以 -(z - 3) +(z + 3) = 10 及 -3 ≤ z ≤ 3
-z + 3 + z + 3= 10 及 -3 ≤ z ≤ 3
6 = 10 及 -3 ≤ z ≤ 3
故情況二無解。
情況三:當 z ≥ 3
|z - 3| = z - 3 及 |z + 3| = z + 3
所以 (z - 3) +(z + 3) = 10 及 z ≥ 3
z - 3 + z + 3= 10 及 z ≥ 3
2z = 10 及 z ≥ 3
z = 5 及 z ≥ -3
故情況三的解為 z = 5
綜合以上三個情況,此題的解為:
z = -5 或 z = 5
2013-07-20 19:19:01 補充:
|z - 3| + |z + 3| = 10
Case I:When z ≤ -3
|z - 3| = -(z - 3) and |z + 3| = -(z + 3)
Hence, -(z - 3)- (z + 3) = 10 and z ≤ 3
-z + 3 - z - 3= 10 and z ≤ 3
-2z = 10 and z ≤ 3
z = -5 and z ≤ -3
Hence, the solution for Case I is z = -5
2013-07-20 19:19:18 補充:
Case II:When -3 ≤ z ≤ 3
|z - 3| = -(z - 3) and |z + 3| = z + 3
Hence, -(z - 3) +(z + 3) = 10 and -3 ≤ z ≤ 3
-z + 3 + z + 3= 10 and -3 ≤ z ≤ 3
6 = 10 and -3 ≤ z ≤ 3
Hence, Case II has no solution.
2013-07-20 19:19:52 補充:
Case III:When z ≥ 3
|z - 3| = z - 3 and |z + 3| = z + 3
Hence, (z - 3) +(z + 3) = 10 and z ≥ 3
z - 3 + z + 3= 10 and z ≥ 3
2z = 10 and z ≥ 3
z = 5 and z ≥ -3
Hence, the solution for Case III is z = 5
The solution of this question is :
z = -5 or z = 5 ...... (ans)