1. If A ={(x,y)|x^2+y^2<=1} , B={(x,y)|y=>1/2} find the area of the region A∩B
2. FIND THE MAXIMUM VALUE OF X^2+Y^2 SUBJECT TO THE CONSTRAINT
(x+2)^2+y^2=1
3. If A={(x,y,z)|x^2+y^2+z^2<=1} , B={(x,y,z)|z=>1/2}, find the volume of the solid
A∩B