一個關於極限的形式問題

2013-07-18 6:38 am
證明或推翻下述命題:
lim x-->∞ (1^n + 2^n +....+ x^n) / x^(n+1) = 1/(n+1) , 其中實數 n > -1

回答 (2)

2013-07-18 7:46 am
✔ 最佳答案
若 n>0,
  ∫_[0,k] x^n dx < 1^n+2^n+...+k^n < ∫_[1,k+1] x^n dx

 k^{n+1}/(n+1) < 1^n+2^n+ ... + k^n < [(k+1)^{n+1}-1]/(n+1)
所以
1/(n+1) < (1^n+2^n+...+k^n)/k^{n+1} < {[(k+1)^{n+1}-1]/k^{n+1}}/(n+1)
令 k→∞ 取極限, 則豕端均得 1/(n+1).
故 lim_{k→∞}(1^n+2^n+...+k^n)/k^{n+1} = 1/(n+1)

若 n=0, 則 (1^n+2^n+...+k^n)/k^{n+1} = k/k = 1 = 1/(n+1).

若 -1 < n < 0, 則
 ∫_[1,k+1] x^n dx < 1^n+2^n+...+k^n < 1+∫_[1,k] x^n dx

  [(k+1)^{n+1}-1]/(n+1) < 1^n+2^n+...+k^n < 1+(k^{n+1}-1)/(n+1)

  {[(k+1)^{n+1}-1]/k^{n+1}}/(n+1) < (1^n+2^n+...+k^n)/k^{n+1}
                  < [(k^{n+1)+n)/k^{n+1}]/(n+1)

令 k→∞, 因 n+1>0, 故 k^{n+1}→∞. 所以, 左右兩端都趨近 1/(n+1).
因此, lim_{k→∞} (1^n+2^n+...+k^n)/k^{n+1} = 1/(n+1).


由以上三種情形的討論, 得證 n>-1, 則
 lim_{k→∞} (1^n+2^n+...+k^n)/k^{n+1} = 1/(n+1).



2013-07-18 00:07:16 補充:
較簡單的證明:
當 n > -1 時,
 | (1^n+2^n+...+k^n) - ∫_[1,k+1] x^n dx | < max{1,(k+1)^n}


 | (1^n+2^n+...+k^n)/k^{n+1} - [(k+1)^{n+1}-1]/[(n+1)k^{n+1}] |
                 < max{1/k^{n+1}, (k+1)^n/k^{n+1}}
右邊當 k→∞ 時趨近於 0; 左邊絕對值符號內第二項趨近於 1/(n+1).

因此, 得 lim_{k→∞} (1^n+2^n+...+k^n)/k^{n+1} = 1/(n+1).


收錄日期: 2021-04-13 19:34:37
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20130717000016KK05342

檢視 Wayback Machine 備份