✔ 最佳答案
若 n>0,
∫_[0,k] x^n dx < 1^n+2^n+...+k^n < ∫_[1,k+1] x^n dx
即
k^{n+1}/(n+1) < 1^n+2^n+ ... + k^n < [(k+1)^{n+1}-1]/(n+1)
所以
1/(n+1) < (1^n+2^n+...+k^n)/k^{n+1} < {[(k+1)^{n+1}-1]/k^{n+1}}/(n+1)
令 k→∞ 取極限, 則豕端均得 1/(n+1).
故 lim_{k→∞}(1^n+2^n+...+k^n)/k^{n+1} = 1/(n+1)
若 n=0, 則 (1^n+2^n+...+k^n)/k^{n+1} = k/k = 1 = 1/(n+1).
若 -1 < n < 0, 則
∫_[1,k+1] x^n dx < 1^n+2^n+...+k^n < 1+∫_[1,k] x^n dx
即
[(k+1)^{n+1}-1]/(n+1) < 1^n+2^n+...+k^n < 1+(k^{n+1}-1)/(n+1)
故
{[(k+1)^{n+1}-1]/k^{n+1}}/(n+1) < (1^n+2^n+...+k^n)/k^{n+1}
< [(k^{n+1)+n)/k^{n+1}]/(n+1)
令 k→∞, 因 n+1>0, 故 k^{n+1}→∞. 所以, 左右兩端都趨近 1/(n+1).
因此, lim_{k→∞} (1^n+2^n+...+k^n)/k^{n+1} = 1/(n+1).
由以上三種情形的討論, 得證 n>-1, 則
lim_{k→∞} (1^n+2^n+...+k^n)/k^{n+1} = 1/(n+1).
2013-07-18 00:07:16 補充:
較簡單的證明:
當 n > -1 時,
| (1^n+2^n+...+k^n) - ∫_[1,k+1] x^n dx | < max{1,(k+1)^n}
故
| (1^n+2^n+...+k^n)/k^{n+1} - [(k+1)^{n+1}-1]/[(n+1)k^{n+1}] |
< max{1/k^{n+1}, (k+1)^n/k^{n+1}}
右邊當 k→∞ 時趨近於 0; 左邊絕對值符號內第二項趨近於 1/(n+1).
因此, 得 lim_{k→∞} (1^n+2^n+...+k^n)/k^{n+1} = 1/(n+1).