✔ 最佳答案
I remember this question is a pastpaper question.
f(x+y)=f(x)+f(y)+x^2y+xy^2
when x=y=0
f(0+0)=f(0)+f(0)+[(0)^2](0)+(0)(0)^2
f(0)=f(0)+f(0)
f(0)=f(0) - f(0)
f(0)=0
f(x+y)=f(x)+f(y)+x^2y+xy^2
f(x+y)-f(x)=f(y)+x^2y+xy^2
[f(x+y)-f(x)]/y=[f(y)+x^2y+xy^2]/y
lim(y->0) [f(x+y)-f(x)]/y=lim(y->0) [f(y)+x^2y+xy^2]/y
f ' (x)=lim(y->0) [f(y)+x^2y+xy^2]/y (defintion: f ' (x)=lim(y->0) [f(x+y)-f(x)]/y)
f ' (x)=lim(y->0) [f(y)+(x^2)(0)+x(0)^2]/y
f ' (x)=lim(y->0) [f(y)/y]
f ' (x)=lim(x->0) [f(x)/x] (variable y can be changed to variable x)
f ' (x)=1
f ' (0)=1
2013-07-04 10:13:48 補充:
the above answer is mistaken
f ' (x)=lim(y->0) [f(y)+x^2y+xy^2]/y
f ' (x)=lim(y->0) [f(y)/y+(x^2)+xy]
f ' (x)=lim(y->0) [f(y)/y+(x^2)+x(0)]
f ' (x)=lim(y->0) [f(y)/y+(x^2)]
f ' (x)=lim(y->0) [f(y)/y] + (x^2)]
f ' (x)=lim(x->0) [f(x)/x] + (x^2)]
f ' (x)=1 + x^2
f ' (0)=1 + (0)^2=1