✔ 最佳答案
設首數為 a, 公差為 d, 項數為 n.
故平均數為 a+(n-1)d/2.
則 n 個離均差為 -(n-1)d/2, -(n-3)d/2,...,(n-3)d/2, (n-1)d/2.
總變異量
= [-(n-1)d/2]^2+[-(n-3)d/2]^2+...+[(n-3)d/2]^2+[(n-1)d/2]^2
= 2Σ{[(n+1-2k)d/2]^2: k=1,2,...[n/2]}
= (d^2/2)Σ(n+1-2k)^2
設 n=2m 或 2m+1, 則
總變異量
= (d^2/2)[(n+1)^2 m -2(n+1)m(m+1) + (2/3)m(m+1)(2m+1)]當 n=2m 時,
總變異量
= (d^2/2)[(n+1)^2(n/2)-2(n+1)(n/2)(n/2+1)+(2/3)(n/2)(n/2+1)(n+1)]
= n(n^2-1)d^2/12
當 n=2m+1 時,
總變異量
= (d^2/2){(n+1)^2(n-1)/2-2(n+1)[(n-1)/2][(n+1)/2]
+(2/3)[(n-1)/2][(n+1)/2]n}
= n(n^2-1)d^2/12則
變異數 = (n^2-1)d^2/12 或 n(n+1)d^2/12 視分母是 n 或 n-1 而定.d=√(3/2),
(n^2-1)(3/2)/12 = 231 ==> n = √(231*8+1) = 43
n(n+1)(3/2)/12 = 231 ==> n(n+1) = 231*8 = 1848 無整數解.故 n=43.