If I_p=∫_(-1)^1▒〖(1-x^2 )^p dx〗,show that for p≥1,
Deduce that when p is a positive integer,
I_p=(2^(2p-1) 〖(p!)〗^2)/(2p-1)!
Show that ∫_0^1▒〖〖(logx)〗^n dx=〖(-1)〗^n n!where n is a positive integer〗
Let I_n=∫_0^∞▒〖x^n e^(-x) dx.Show that if n is positive,then〗
I_n=nI_(n-1)
Hence find I_n if n is a positive integer.