Summation

2013-06-20 2:58 am
Find sum of 1^3 + 2^3 + 3^3 + 4^3 + .... + n^3 in terms of n.

回答 (3)

2013-06-20 11:51 pm
✔ 最佳答案
有乜野唔明或者有野想問,可以補充問題。希望我嘅答案可以幫到你^ ^

圖片參考:http://i.imgur.com/lQhhBYz.png


2013-06-20 15:52:36 補充:
#002:
題目是要你推算一個公式出來,不是要你證明那條公式,請從零開始找起。
2013-06-20 9:02 am
1³+2³+3³+...+n³ = (1+2+3+...+n)²
this can be proven by Mathematical Induction (M.I.)

1+2+3+,,,+n = n(n+1)/2 (this can also be proven by M.I.)

therefore,

1³+2³+3³+...+n³ = [n(n+1)/2]² = n²(n+1)²/4
參考: myself


收錄日期: 2021-04-23 22:04:16
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20130619000051KK00295

檢視 Wayback Machine 備份