✔ 最佳答案
這是我的標記, 這是不正式, 請不要在其他地方使用
1. (2∫1)(x)dx=積分x由1到2
2. 2[x]1=(2-1)
3. k的開方根=√k
設x = (√k)tanZ---①
tanZ = x / (√k)
sinZ = x / √(k+x^2)
cosZ = (√k) / √(k+x^2)
a -> arctan [a/(√k)] (代x=a入①)
b -> arctan [b/(√k)] (代x=b入①)
tanA = a/(√k) -> A = arctan [a/(√k)]
tanB = b/(√k) -> B = arctan [b/(√k)]
sinA = a / √(k+a^2)
sinB = b / √(k+b^2)
cosA = (√k) / √(k+a^2)
cosB = (√k) / √(k+b^2)
dx = d [(√k)tanA]
積分從a積到b x^2/(k+x^2)^(3/2)
=(b∫a) [x^2/(k+x^2)^(3/2)] dx
=(arctan [b/(√k)] ∫ arctan [a/(√k)])
{ [(√k) tanZ]^2 / {k + [(√k) tanZ]^2}^(3/2) } d [(√k)tanZ]
=(B ∫ A) {k(tanZ)^2 / [k+k(tanZ)^2]^(3/2)}d[(√k)tanZ]
=(B ∫ A) { (tanZ)^2 /(√k)[1+(tanZ)^2]^(3/2)}d[(√k)tanZ]
=(B ∫ A) { (tanZ)^2 / [1+(tanZ)^2]^(3/2)}d(tanZ)
=(B ∫ A) { (tanZ)^2 / [(secZ)^2]^(3/2) }d(tanZ)
=(B ∫ A) [ (tanZ)^2 / (secZ)^3 ]d(tanZ)
=(B ∫ A) [ (tanZ)^2 / (1/cosZ)^3 ]d(tanZ)
=(B ∫ A) { [(cosZ)^3](tanZ)^2 }d(tanZ)
=(B ∫ A) [ (cosZ) (sinZ)^2 ]d(tanZ)
=(B ∫ A) [ (cosZ) (sinZ)^2 ] (secZ)^2 dZ
=(B ∫ A) [ (cosZ) (sinZ)^2 ] (1/cosZ)^2 dZ
=(B ∫ A) [ (sinZ) (tanZ) ] dZ
=(B ∫ A) [ - (tanZ) ] d(cosA)
=B[ - (tanZ)(cosZ) ]A - (B ∫ A) [ - (cosZ) ] d(tanA)
=B[ - sinZ ]A + (B ∫ A) (cosZ) d(tanZ)
=B[ - sinZ ]A + (B ∫ A) [ (cosZ)(secZ)^2 ] dZ
=B[ - sinZ ]A + (B ∫ A) (secZ) dZ
=B[ - sinZ ]A + B[ ln |sec x + tan x| ]A
= - sinB + sinA + ln |sec B + tan B| - ln |sec A + tan A|
= - sinB + sinA + ln |1/cos B + tan B| - ln |1/cos A + tan A|
=a / √(k+a^2) - b / √(k+b^2)
+ ln |√(k+b^2) / (√k) + b/(√k)| - ln |√(k+a^2) / (√k) + a/(√k)|
=a / √(k+a^2) - b / √(k+b^2)
+ ln | [b+√(k+b^2)] / (√k) | - ln | [a+√(k+a^2)] / (√k) |
=a / √(k+a^2) - b / √(k+b^2)
+ ln | { [b+√(k+b^2)] / (√k) } / { [a+√(k+a^2)] / (√k) } |
=a / √(k+a^2) - b / √(k+b^2) + ln | [b+√(k+b^2)] / [a+√(k+a^2)] |
=a√(k+a^2) / (k+a^2) - b√(k+b^2) / (k+b^2)
+ ln | [b+√(k+b^2)][a - √(k+a^2)] / [a^2 - (k+a^2)] | (有理化)
=a√(k+a^2) / (k+a^2) - b√(k+b^2) / (k+b^2)
+ ln | [b+√(k+b^2)][a - √(k+a^2)] / k | (因為 |-k| = |k|)
2013-06-19 06:57:59 補充:
可不可解釋一下為什麼要設x=n*sec(y)?
x=n*tan(y)可以嗎?
請指教,謝謝!