隨機變量和離散概率分佈問題

2013-06-17 7:49 am
1. 隨機變量X的概率分佈可以數學公式P(X=x)=2kx表示,其中x=1,2,3,4,而k為一個非 零常數。求
a) k的值
b) p(4<3X+1<11)

2.一個袋中有2個紅球、3個黃球和5個藍球,其中抽得不同顏色的球有不同得分。抽 得紅球有1分,黃球有2分,藍球有3分。
現從袋中隨意抽出2個球,而每次均把球放回。求得分的期望值和方差。

3.X和Y為2個獨立的隨機變量,其概率分佈如下:
x 1 2 3 4 5
p(X=x) 0.2 0.3 0.1 0.2 0.2

y 1 2 3 4 5
p(Y=y) 2k 0.2-k 0.1 0.1 0.2

a)求k。
b)求p(X+Y=7)和P(X-Y>1)
c)求p(X-Y>1|X+Y=7)

4.有20部MP3機,有3部是壞的。一名採購員現隨意購買6部。設他買到的壞MP3 機數目為隨機變量D。求
a)D的概率分佈
b)D的期望值和標準差

5.某城市四月份中某天為晴天or雨天的概率分別為0.7和0.3。
a)問該城市於四月份內,平均有多少天是晴天?
b)求該城市於四月份內,有不多於5個雨天的概率。
c)求該城市於四月份內,晴天and雨天的日數相等的概率。
d)麗紗在晴天和雨天出外購物的概率分別是0.8和0.4。已知麗紗曾於四月一日出 外購物,求當天是雨天的概率。

6.已知一枚T-101導彈的命中率為0.4。若要有最少90%的概率命中某目標,問最少 要發射多少枚T-101導彈?

回答 (1)

2013-06-17 5:08 pm
✔ 最佳答案
1(a) 2k(1) + 2k(2) + 2k(3) + 2k(4) = 1
2k+4k+6k+8k = 1
20k = 1
k = 1/20

1(b) p(4<3X+1<11)
=p(3<3X<10)
=p(1<X<10/3)
=p(X=2 or 3)
=p(X+2) + p(X+3)
=2k(2) + 2k(3)
=4k + 6k
=10k
=10(1/20)
=0.5

2. R=紅, Y=黃, B=藍
total balls=2R+3Y+5B
R=1分
Y=2分
B=3分
現從袋中隨意抽出2個球,而每次均把球放回。
可能結果:
RR(2分), RY(3分), RB(4分),
YR(3分), YY(4分), YB(5分),
BR(4分), BY(5分), BB(6分)

得分的期望值( E(X) )
=2(2/10)^2 + 3(2/10)(3/10) + 4(2/10)(5/10)
+3(3/10)(2/10) + 4(3/10)(3/10) + 5(3/10)(5/10)
+4(5/10)(2/10) + 5(5/10)(3/10) + 6(5/10)(5/10)
=(2/10)(4/10 + 9/10 + 2) + (3/10)(6/10 + 12/10 + 25/10)
+(5/10)(8/10 + 15/10 + 3)
=0.66+1.29+2.65
=4.6分

E(X^2)=(分數^2)*(概率), E(X)=得分的期望值
得分的方差
=E(X^2) - [E(X)]^2
=(2^2)(2/10)^2 + (3^2)(2/10)(3/10) + (4^2)(2/10)(5/10)
+(3^2)(3/10)(2/10) + (4^2)(3/10)(3/10) + (5^2)(3/10)(5/10)
+(4^2)(5/10)(2/10) + (5^2)(5/10)(3/10) + (6^2)(5/10)(5/10) - 4.6^2
=2.3+5.73+14.35-21.16
=1.22平方分 (留意單位)

3(a) 2k+(0.2-k)+0.1+0.1+0.2=1
k+0.6=1
k=0.4
但是p(Y=2)=(0.2-0.4)= -0.2
(正常來說,概率不會是負數,是不是打錯了?)
第3條問題的其餘部分可能都有問題,所以先不回答

4(a)
p(D=1) = (6C1)(3/20)(17/19)(16/18)(15/17)(14/16)(13/15) = 91/190
p(D=2) = (6C2)(3/20)(2/19)(17/18)(16/17)(15/16)(14/15) = 7/570
p(D=3) = (6C3)(3/20)(2/19)(1/18) = 1/1140

4(b) D的期望 = 1(91/190) + 2(7/570) + 3(1/1140) = 577/1140部
D的標準差 = D的方差的平方根
=[(1^2)(91/190) + (2^2)(7/570) + (3^2)(1/1140) - (577/1140)^2]的平方根
=0.5289平方部(4位小數)

5(a) 平均晴天的天數=30(0.7)=21天

5(b) 有不多於5個雨天的概率
=(30C5)(0.3^5)(0.7^25)+(30C4)(0.3^4)(0.7^26)+(30C3)(0.3^3)(0.7^27)
+(30C2)(0.3^2)(0.7^28)+(30C1)(0.3)(0.7^29)+(0.7^30)
=0.0803(4位小數)

5(c) 晴天and雨天的日數相等的概率
=晴天and雨天的日數都是15天的概率
=(30C15)(0.3^15)(0.7^15)=0.0106(4位小數)

5(d) 當天是雨天的概率(已知麗紗曾於四月一日出 外購物)
= (0.4)(0.3) / [(0.4)(0.3) + (0.8)(0.7)]
=3/17

6 設最少發射T-101導彈的數目是X
X [(1-0.4)^(X-1)](0.4) = 0.9
X (0.6)^(X-1) = 2.25
log(底數0.6) [X (0.6)^(X-1)] = log(底數0.6) 2.25
log(底數0.6) X + log(底數0.6) (0.6) = log(底數0.6) 2.25
(log X) / (log0.6) + 1 = (log 2.25) / (log0.6)
X = 3.75
最少發射T-101導彈的數目是4枚
參考: myself


收錄日期: 2021-05-02 10:24:33
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20130616000051KK00355

檢視 Wayback Machine 備份