函數問題...f(x)!!幫幫手.l! 10mark

2013-06-13 12:19 am
f(x)=ax+1,則f(ax+1)=?

A:ax+1
B:a^2x+a+1
C.a^2x^2+2ax+1
D2ax+2

已知y=f(x),其中f(X)=負2kx+k,若f(1)=負3
i:k=3
ii:f(x)是x的線性函數
iii:(2.6)位於y=f(x)的圖像上

A:iii
B:i and ii
C:i and iii
D:i,ii and iii

清楚說明..麻煩哂!!

回答 (3)

2013-06-14 10:22 pm
✔ 最佳答案
Please refer to the following figure:

圖片參考:http://imgcld.yimg.com/8/n/HA00622999/o/20130614142043.jpg
參考: 函數 function
2013-06-13 2:14 am
1.)
f(x)=ax+1
f(y)=ay+1
Let y=ax+1
f(ax+1)=a(ax+1)+1
f(ax+1)=a^2x+a+1
Answer is B.


2i.)
f(x)=-2kx+k
f(1)=-2(k)(1)+k
f(1)=-2k+k
f(1)=-k
-3=-k
k=3
i) is wrong.

2ii.)(上網找的定義)
若 f : x-->f(x) 是線性函數,則f滿足以下條件:

1.f(a+b)=f(a)+f(b)

2.f(k*a)=k*f(a),k 是任意常數

這就是線性函數的定義
f(x)=-2kx+k (k=3)
f(x)=-6x+3
f(2乘1)=f(2)=-9,2乘f(1)=-6
f(2乘1)不等於2乘f(1)
ii) is wrong.(不過根據普遍人,只要y=f(x)是一直線就是線性函數)

2iii.)
y=f(x)
f(2)=-9
(2,-9)才是y=f(x)的圖像上的一點
iii is wrong.

所以answer is B.
2013-06-13 1:39 am
1.B
2.B
(「負」可以用「-」表示)


收錄日期: 2021-04-13 19:30:39
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20130612000051KK00183

檢視 Wayback Machine 備份