differentiate

2013-06-11 12:59 pm
H(Z)=ln√ ̄ (16-Z^2)/ (16+Z^2)

回答 (2)

2013-06-11 7:08 pm
✔ 最佳答案
H(Z)=ln√[(16-Z^2)/(16+Z^2)]
Sol
H(Z)=ln√[(16-Z^2)/(16+Z^2)]
2H(Z)=2ln√[(16-Z^2)/(16+Z^2)]
2H(Z)=ln[(16-Z^2)/(16+Z^2)]
2H(Z)=ln(16-Z^2)-ln(16+Z^2)
2H’(Z)=-2Z/(16-Z^2)-2Z/(16+Z^2)
H’(Z)=-Z/(16-Z^2)-Z/(16+Z^2)
=[-Z(16+Z^2)-Z(16-Z^2)]/(256-Z^4)
=-32Z/(256-Z^4)
=32Z/(Z^4-256)



2013-06-11 11:09:27 補充:
16+Z^2>0
2013-06-11 6:22 pm
dH(Z)/dZ = d{ ln [ sq. root of ( (16-Z^2) / (16+Z^2) ) ] } /dZ

H ' (Z) = 1/ sq. root of ( (16-Z^2) / (16+Z^2) )
* 1/ [2 * sq. root of ( (16-Z^2) / (16+Z^2) ) ]
* [ (16+Z^2)(-2Z) - (2Z)(16-Z^2) ] / (16+Z^2)^2

H ' (Z) = 1/ [2 * (16-Z^2) / (16+Z^2)]
* [-64Z / (16+Z^2)^2]

H ' (Z) = (16+Z^2) / [2 * (16-Z^2)]
* [-64Z / (16+Z^2)^2]

H ' (Z) = -32Z / [(16+Z^2) * (16-Z^2)]

H ' (Z) = -32Z / (16^2 - Z^4)

H ' (Z) = -32Z / (256 - Z^4)
參考: self


收錄日期: 2021-05-01 23:01:18
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20130611000051KK00022

檢視 Wayback Machine 備份