✔ 最佳答案
1. ∫ln(x+2) dx=___?
Sol
先求
∫lnxdx
Set u=lnx,dv=dx
du=dx/x,v=x
∫lnxdx
=xlnx-∫dx
=xlnx-x+c
So
∫ln(x+2)dx
=∫ln(x+2)d(x+2)
=(x+2)ln(x+2)-x+c
2. 求2025!共有___個0?
題目改為求2025!最後共有___個0
Sol
2025=1*2*3*4*5*….*2025
=>5*10*15*…….*2025
=>1*2*3*4*5*……..*405 提出405個5
=>5*10*15*20…….*405
=>1*2*3*……..*81 提出81個5
=>5*10*….*80
=>1*2*3*…*16 提出16個5
=>5*10*15
405+81+16+3=505個5
3.假設砲彈是以f(x)=x^2-2x+1的拋物線移動則求最高點?
Sol
x^2-2x+1
=(x-1)^2>=0
最高點不存在
4.f(x)=x^3-x^2 求x在[-1,3]區間f(x)最大值?
Sol
f(x)=x^3-x^2
f’(x)=3x^2-2x
f”(x)=6x-2
when 3x^2-2x=0
x(3x-2)=0
x=0 or x=2/3
(1) x=0
6*0-2=-2<0 =>相對極大
(2) x=2/3
6*(2/3)-2=2>0=>相對極小
[-1,3] 包含 0,2/3
f(-1)=(-1)-1=-2
f(0)=0-0=0
f(2/3)=(8/27)-(4/9)=-4/27
f(3)=27-90=18
區間f(x)最大值=18
5.若i=√-1 求i+i^2+i^3+...+i^95+i^96=___?
Sol
i+i^2+i^3+...+i^95+i^96
=( i+i^2+i^3+i^4)+(i^5+i^6+i^7+ i^8)+…(i^93+i^94+i^95+i^96)
=0*24
=0
6. Σ(n=1 to ∞)_[1/(n^2+3n)]
=lim(x-∞)_ Σ(n=1 to x)_[1/(n^2+3n)]
=(1/3)lim(x-∞)_ Σ(n=1 to x)_[3/(n^2+3n)]
=(1/3)lim(x-∞)_ Σ(n=1 to x)_[(n+3-n)/(n^2+3n)]
=(1/3)lim(x-∞)_{ Σ(n=1 to x)_1/n-Σ(n=1 to x)_1/(n+3)]}
=(1/3)lim(x-∞)_{ (1/1+1/2+1/3+…+1/x)-[1/4+1/5+1/6+…
+1/(x+1)+1/(x+2)+1/(x+3)]}
=(1/3)lim(x-∞)_[(1/1+1/2+1/3-1/(x+1)-1/(x+2)-1/(x+3)]
=(1/3)*(1/1+1/2+1/3)
=11/18
7.若SinA+CosA=4/5求CosA=___?
Sol
SinA+CosA=4/5
SinA=4/5-CosA
5SinA=4-5CosA
25Sin^2 A=25Cos^2 A-40CosA+16
25-25Cos^2 A=25Cos^2 A-40CosA+16
50Cos^2 A-40CosA-9=0
CosA=[40+/-√(1600+4*50*9)]/100=(4+/-√34)/10