中四數學題一問

2013-06-06 8:31 pm
If a not equal to b, and given that 5=4a-3a^2 = 4b-3b^2, then 1/a + 1/b =?

回答 (2)

2013-06-06 9:52 pm
✔ 最佳答案
Answer: 4/5

Solutions:

5 = 4a - 3a^2 = 4b - 3b^2
=> 3a^2 - 4a + 5 = 0 and 3b^2 - 4b + 5 = 0
thus a and b are the roots of the quadratic equation 3x^2 - 4x + 5 = 0

So, a + b = sum of roots = 4/3
and ab = product of roots = 5/3

therefore, 1/a + 1/b
= (a + b)/(ab)
= (4/3)/(5/3)
= 4/5
參考: knowledge
2013-06-07 12:40 am
If a not equal to b,and given that 5=4a-3a^2=4b-3b^2,then 1/a + 1/b =?
Sol
5=4a-3a^2=4b-3b^2
3a^2-4a+5=0,3b^2-4b+5=0,a<>b
So
a,b為3x^2-4x+5=0之二根
1/a,1/b為3(1/x)^2-4(1/x)+5=0之二根
5x^2-4x+3=0
So
1/a+1/b=-(-4)/5=4/5


收錄日期: 2021-04-28 14:22:22
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20130606000051KK00084

檢視 Wayback Machine 備份