一條很難的數學問題,求解答

2013-06-01 1:20 pm
Find a formula for f(x,y) so that fx = 3x^2y+e^y, fy=x^3-2+xe^y and f(2,0)

f(x,y)= ________________

回答 (2)

2013-06-01 5:43 pm
✔ 最佳答案
Assume your question states that ∂f/∂x = 3x^2y+e^y, ∂f/∂y = x^3-2+xe^y

f = x^3y+xe^y+f(y), where f(y) is a function of y
f = x^3y-2y+xe^y+f(x), where f(y) is a function of x

Therefore f(x,y) = x^3y-2y+xe^y
f(2,0) = 2e^0 = 2

2013-06-01 09:44:07 補充:
Correction: f = x^3y-2y+xe^y+f(x), where f(x) is a function of x

2013-06-01 10:20:11 補充:
Correction: f(x,y) = x^3y-2y+xe^y+f0, where f0 is a constant
f(2,0) = 2+f0
2013-06-01 5:02 pm
f(2,0)=??????


收錄日期: 2021-04-23 23:26:25
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20130601000051KK00069

檢視 Wayback Machine 備份