✔ 最佳答案
f(x)=(x+1)/(x-1)
f[(x+1)/(x-1)]
=[(x+1)/(x-1) + 1 ] / [(x+1)/(x-1) - 1 ] <----------------------substitution
=[(x+1)/(x-1) + (x-1)/(x-1)] / [(x+1)/(x-1) - (x-1)/(x-1)] <--change 1 to (x-1)/(x-1)
={ [(x+1)+(x-1)]/(x-1) } / { [(x+1)-(x-1)]/(x-1) } <-----------add/subtract the fractions
=[(x+1)+(x-1)] / [(x+1)-(x-1)] <--------------------------------multiply x-1 to both sides
=(x+1+x-1) / (x+1-x+1) <---------------------------------------brackets
=2x/2 <------------------------------------------------------------add/subtract the terms
=x