數學問題,唔識做,幫一幫手

2013-05-30 4:17 pm
Given f(x)=x+1/x-1 , find f(x+1/x-1)

回答 (2)

2013-05-31 4:54 am
✔ 最佳答案
f(x)=(x+1)/(x-1)
f[(x+1)/(x-1)]
=[(x+1)/(x-1) + 1 ] / [(x+1)/(x-1) - 1 ] <----------------------substitution
=[(x+1)/(x-1) + (x-1)/(x-1)] / [(x+1)/(x-1) - (x-1)/(x-1)] <--change 1 to (x-1)/(x-1)
={ [(x+1)+(x-1)]/(x-1) } / { [(x+1)-(x-1)]/(x-1) } <-----------add/subtract the fractions
=[(x+1)+(x-1)] / [(x+1)-(x-1)] <--------------------------------multiply x-1 to both sides
=(x+1+x-1) / (x+1-x+1) <---------------------------------------brackets
=2x/2 <------------------------------------------------------------add/subtract the terms
=x
參考: myself and myself only :D
2013-05-30 4:58 pm
f [(x + 1) / (x - 1)]
= {[(x + 1) / (x - 1)] + 1} / {[(x + 1) / (x - 1)] - 1}
= [(x + 1) + (x - 1)] / [(x + 1) - (x - 1)]
= (x + 1 + x - 1) / (x + 1 - x + 1)
= 2x / 2
= x
參考: knowledge


收錄日期: 2021-04-23 22:03:52
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20130530000051KK00057

檢視 Wayback Machine 備份