高中數學題目

2013-05-29 4:18 am
設x.y為實數,求x平方-2xy+2y平方+2x-6y+10的最小值?

希望有詳細的解題過程!謝謝!

回答 (3)

2013-05-29 4:38 am
✔ 最佳答案
x^2-2xy+2y^2+2x-6y+10

=x^2-2xy+2x-2y+y^2+1+y^2-4y+4+5

=(x-y+1)^2+(y-2)^2+5

=>最小值為5

2013-05-28 22:15:29 補充:
謝謝~如露亦如電~^^

(x-y)^2+2(x-y)+1

設(x-y)=A

A^2+2A+1=(A+1)^2

代入~

(x-y+1)^2

原本藍色字是要補充算法~結果忘記了:p
參考: 我~
2013-05-29 4:39 pm
設x.y為實數,求x^2-2xy+2y^2+2x-6y+10的最小值?
Sol
判別式法
Set p=x^2-2xy+2y^2+2x-6y+10
x^2+x(-2y+2)+(2y^2-6y+10-p)=0
D1=(-2y+2)^2-4*1*(2y^2-6y+10-p)>=0
(y-1)^2-(2y^2-6y+10-p)>=0
(y^2-2y+1)-(2y^2-6y+10-p)>=0
-y^2+4y+p-9>=0
y^2-4y+9-p<=0
D2<=(-4)^2-4*1*(9-p)<=0
4-(9-p)<=0
-5+p<=0
5<=p
2013-05-29 5:57 am
補充一下(藍色部分)
x^2-2xy+2x-2y+y^2+1
=(x^2-2xy+y^2)+(2x-2y)+1
=(x-y)^2+2(x-y)+1
=[(x-y)+1]^2
=(x-y+1)^2

2013-05-28 23:38:06 補充:
再雞婆一下(不問自答)
(x-y+1)^2+(y-2)^2+5
=>最小值為5
此時,y-2=0,y=2; x-2+1=0=>x=1
即x=1,y=2時有最小值5


收錄日期: 2021-05-02 10:40:36
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20130528000016KK04106

檢視 Wayback Machine 備份