✔ 最佳答案
a_n = =∫(0,1)x^n(1-x)²dx
= ∫(0,1) x^n(1 - 2x + x^2) dx
= x^(n + 1)/(n + 1) - 2x^(n + 2)/(n + 2) + x^(n + 3)/(n + 3) | [0,1]
= 1/(n + 1) - 2/(n + 2) + 1/(n + 3)
Σ(k=1,n)ak
= [(1/2 - 1/3) - (1/3 - 1/4)] + [(1/3 - 1/4) - (1/4 - 1/5)] + ... + [[1/(n + 1) - 1/(n + 2)] - [1/(n + 2) - 1/(n + 3)]]
= (1/2 - 1/3) - [1/(n + 2) - 1/(n + 3)]
= 1/6 - 1/(n + 2) + 1/(n + 3)
= (n^2 + 5n + 6 - 6n - 18 + 6n + 12)/6(n + 2)(n + 3)
= n(n + 5)/6(n + 2)(n + 3)
(2) lim(n→∞) n³ * an
= lim(n→∞) n³ * 1/(n + 1) - 2/(n + 2) + 1/(n + 3)
= lim(n→∞) n³ * [[1/(n + 1) - 1/(n + 2)] - [1/(n + 2) - 1/(n + 3)]]
= lim(n→∞) n³ * 1/(n + 1)(n + 2) - 1/(n + 2)(n + 3)
= lim(n→∞) n³ * 2/(n + 1)(n + 2)(n + 3)
= lim(n→∞) 2/(1 + 1/n)(1 + 2/n)(1 + 3/n)
= 2