有關畢氏定理的麻煩問題【lop】
回答 (5)
By Pythagoras thm., AC^2 = AB^2 + BC^2 = 5^2 + 12^2 = 169. so AC = 13 = DE.
DC^2 = DE^2 - EC^2 = 169 - 36 = 133, DC = 11.533.
Angle ACB = arctan (5/12) = 22.62 degree.
Angle ACD = 90 - 22.62 = 67.38 degree.
Angle EDC = arcsin (EC/DE) = arcsin(6/13) = 27.486 degree.
so angle DFC = 180 - 67.38 - 27.486 = 85.134 degree.
Applying sine rule to triangle DFC
FC/sin 27.486 = DC/sin 85.134 = 11.533/sin 85.134
so FC = 11.533 sin 27.486/sin 85.134 = 5.342.
AF = AC - FC = 13 - 5.342 = 7.658.
Actually do you know the answer?
Re ✡ HYPERCUBE ✡,
sure
2013-05-19 22:39:06 補充:
知道又好,不知道又好,都是想拿一個方法而已。
I'll use trigonometric function.
收錄日期: 2021-04-13 19:28:52
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20130519000051KK00258
檢視 Wayback Machine 備份