∫3x^3/(x^2 + 1)^3dx 麻煩看看我有無計錯

2013-05-19 2:08 am
我分別用了三角代入法,以及普通的代入法,去計算 "∫ 3x^3/(x^2 + 1)^3 dx"。兩個答案不同,為什麼?麻煩看看我有無計錯:

三角代入法:
∫ 3x^3/(x^2 + 1)^3 dx
= ∫ 3x^3/(1^2 + x^2)^3 dx

Let x = tanθ. (trigonometric substitution)
dx/dθ = sec^2θ
dx = sec^2θ dθ

= ∫ 3 * tan^3θ/(1 + tan^2θ)^3 * sec^2θ dθ
= ∫ 3 * tan^3θ/sec^6θ * sec^2θ dθ
= ∫ 3 * tan^3θ/sec^4θ dθ
= ∫ 3 * sin^3θcosθ dθ

Let u = sinθ.
du/dθ = cosθ
dθ = du/cosθ

= ∫ 3 * u^3 du
= 3/4 * u^4 + C
= 3/4 * sin^4θ + C
= 3/4 * (x/√(1 + x^2))^4 + C
= 3/4 * x^4/(1 + x^2)^2 + C

普通的代入法:
∫ 3x^3/(x^2 + 1)^3 dx

Let u = x^2 + 1.
du/dx = 2x
dx = du/2x

= ∫ 3x^3/u^3 du/2x
= ∫ 3/2 * x^2/u^3 du
= ∫ 3/2 * (u - 1)/u^3 du

(u - 1)/u^3 = A/u + B/u^2 + C/u^3 (partial fraction)
u - 1 = Au^2 + Bu + C
A = 0
B = 1
C = -1

= 3/2 * ∫ 1/u^2 - 1/u^3 du
= 3/2 * (-1 * 1/u - 1/(-2) * 1/u^2) + C
= 3/2 * (1/2 * 1/u^2 - 1/u) + C
= 3/2 * (1/(2u^2) - 2u/(2u^2)) + C
= 3/2 * (1 - 2u)/(2u^2) + C
= 3/4 * (1 - 2u)/u^2 + C
= 3/4 * (1 - 2(x^2 + 1))/(x^2 + 1)^2 + C
= 3/4 * (-2x^2 - 1)/(x^2 + 1)^2 + C
= -3/4 * (2x^2 + 1)/(x^2 + 1)^2 + C

回答 (2)

2013-05-19 4:41 pm
✔ 最佳答案
Simply, Both are correct, in fact you can prove that the two expressions are equivalent.
Simon

2013-05-19 08:53:13 補充:
There is another integral that gives different answers by using different approaches. You may try to integrate In ( 1/ (sqrt( 1-x^2 )) ) by letting x=sint and x=cost separately and you will find two different solutions, but they are in fact the same answers with difference by a constant.
Simon
參考: , Simon YAU
2013-05-20 2:09 am
∫ 3x^3/(x^2 + 1)^3 dx
=(3/8)∫d(x^2+1)^3 /(x^2+1)^3
=(3/8)In|x^2+1|^3+C
=(9/8)In(x^2+1)+C


收錄日期: 2021-04-11 19:46:32
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20130518000051KK00238

檢視 Wayback Machine 備份