✔ 最佳答案
∫ 3x^3/(x^2 + 1)^3 dx
= ∫ 3x^3/(1^2 + x^2)^3 dx
Let x = tanθ. (trigonometric substitution)
dx/dθ = sec^2θ
dx = sec^2θ dθ
= ∫ 3 * tan^3θ/(1 + tan^2θ)^3 * sec^2θ dθ
= ∫ 3 * tan^3θ/sec^6θ * sec^2θ dθ
= ∫ 3 * tan^3θ/sec^4θ dθ
= ∫ 3 * sin^3θcosθ dθ
Let u = sinθ.
du/dθ = cosθ
dθ = du/cosθ
= ∫ 3 * u^3 du
= 3/4 * u^4 + C
= 3/4 * sin^4θ + C
= 3/4 * (x/√(1 + x^2))^4 + C
= 3/4 * x^4/(1 + x^2)^2 + C
Edit:
I used a different method and got the answer below, which was confirmed by online integral calculators. I don't know why the above one is wrong.
∫ 3x^3/(x^2 + 1)^3 dx
Let u = x^2 + 1.
du/dx = 2x
dx = du/2x
= ∫ 3x^3/u^3 du/2x
= ∫ 3/2 * x^2/u^3 du
= ∫ 3/2 * (u - 1)/u^3 du
(u - 1)/u^3 = A/u + B/u^2 + C/u^3 (partial fraction)
u - 1 = Au^2 + Bu + C
A = 0
B = 1
C = -1
= 3/2 * ∫ 1/u^2 - 1/u^3 du
= 3/2 * (-1 * 1/u - 1/(-2) * 1/u^2) + C
= 3/2 * (1/2 * 1/u^2 - 1/u) + C
= 3/2 * (1/(2u^2) - 2u/(2u^2)) + C
= 3/2 * (1 - 2u)/(2u^2) + C
= 3/4 * (1 - 2u)/u^2 + C
= 3/4 * (1 - 2(x^2 + 1))/(x^2 + 1)^2 + C
= 3/4 * (-2x^2 - 1)/(x^2 + 1)^2 + C
= -3/4 * (2x^2 + 1)/(x^2 + 1)^2 + C