Trigonometric Identities

2013-05-12 8:59 am
Prove that cosec2θ - cot2θ ≡ tanθ

請問如何解答??

回答 (2)

2013-05-12 9:40 am
✔ 最佳答案
L.H.S.
= cosec2θ - cot2θ
= (1 / sin2θ) - (cos2θ / sin2θ)
= [(sin²θ + cos²θ) / 2sinθcosθ] - [(cos²θ - sin²θ) / 2sinθcosθ]
= (sin²θ + cos²θ - cos²θ + sin²θ) / 2sinθcosθ
= 2sin²θ / 2sinθcosθ
= sinθ / cosθ
= tanθ
= R.H.S.

Hence, cosec2θ - cot2θ ≡ tanθ

2013-05-12 01:42:50 補充:
trigonometric identities used :
sin²θ + cos²θ = 1
cos2θ = cos²θ - sin²θ
sin2θ = 2sinθcosθ
參考: micatkie, micatkie
2013-05-12 10:40 pm
L.H.S.= cosec2θ - cot2θ
= (1 / sin2θ) - (cos2θ / sin2θ)
= [(sin²θ + cos²θ) / 2sinθcosθ] - [(cos²θ - sin²θ) / 2sinθcosθ]
= (sin²θ + cos²θ - cos²θ + sin²θ) / 2sinθcosθ
= 2sin²θ / 2sinθcosθ
= sinθ / cosθ
= tanθ
= R.H.S.


收錄日期: 2021-04-11 19:45:15
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20130512000051KK00007

檢視 Wayback Machine 備份